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Proof. By Proposition 6.7(c), we may assume that no primary component
in the primary decomposition of a is irrelevant. Let Z be the algebraic space of
zeros of a in projective space. We may assume k algebraically closed as noted
previously. Then there exists a homogeneous polynomial L € k[X] of degree 1
(a linear form) which does not lie in any of the prime ideals belonging to the
primary ideals in the given decomposition. In particular, L is not a divisor of
zero mod a. Then the components of the algebraic space of zeros of a + (L)
must have dimension = r — 1. By induction and Theorem 6.6, we conclude
that the difference

X(n,a) = x(n — 1, a)
satisfies the conditions of Lemma 6.4(b), which concludes the proof.

The polynomial in Theorem 6.9 is called the Hilbert polynomial of the
ideal a.

Remark. The above resuits give an introduction for Hartshorne’s [Ha 77],
Chapter I, especially §7. If Z is not empty, and if we write

nr
x(n,a) = o) + lower terms,

then ¢ > 0 and ¢ can be interpreted as the degree of Z, or in geometric terms,
the number of points of intersection of Z with a sufficiently general linear variety
of complementary dimension (counting the points with certain multiplicities).
For explanations and details, see [Ha 77], Chapter I, Proposition 7.6 and Theorem
7.7; van der Waerden [vdW 29] which does the same thing for multihomogeneous
polynomial ideals; [La 58], referred to at the end of Chapter VIII, §2; and the
papers [MaW 85], [Ph 86], making the link with van der Waerden some six
decades before.
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§7. INDECOMPOSABLE MODULES

Let A be a ring, not necessarily commutative, and E an 4-module. We
say that E is Artinian if E satisfies the descending chain condition on sub-
modules, that is a sequence

E1 o) E2 > E3 -
must stabilize: there exists an integer N such thatif n = N then E, = E, . ;.

Example 1. If k is a field, 4 is a k-algebra, and E is a finite-dimensional
vector space over k which is also an A-module, then E is Artinian as well as
Noetherian.

Example 2. Let A be a commutative Noetherian local ring with maximal
ideal m, and let q be an m-primary ideal. Then for every positive integer n,
A/q" is Artinian. Indeed, A/q9" has a Jordan-Holder filtration in which each
factor is a finite dimensional vector space over the field A/m, and is a module
of finite length. See Proposition 7.2.

Conversely, suppose that A4 is a local ring which is both Noetherian and
Artinian. Let m be the maximal ideal. Then there exists some positive integer
n such that m" = 0. Indeed, the descending sequence m" stabilizes, and
Nakayama’s lemma implies our assertion. It then also follows that every
primary ideal is nilpotent.

As with Noetherian rings and modules, it is easy to verify the following
statements:

Proposition 7.1. Let A be a ring, and let
O-E->E->E -0

be an exact sequence of A-modules. Then E is Artinian if and only if E' and
E" are Artinian.

We leave the proof to the reader. The proofis the same as in the Noetherian
case, reversing the inclusion relations between modules.

Proposition 7.2. A module E has a finite simple filtration if and only if E
is both Noetherian and Artinian.

Proof. A simple module is generated by one element, and so is Noetherian.
Since it contains no proper submodule # 0, it is also Artinian. Proposition 7.2
is then immediate from Proposition 7.1.

A module E is called decomposable if E can be written as a direct sum

E=E ®E,
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with E, # E and E, # E. Otherwise, E is called indecomposable. If E is
decomposable as above, let e, be the projection on the first factor, and
e, = 1 — e, the projection on the second factor. Then e,, e, are idempotents
such that

e, # 1, e, # 1, e, +e,=1 and eje, =eye; =0.

Conversely, if such idempotents exist in End(E) for some module E, then E is
decomposable, and ¢; is the projection on the submodule ¢;E.
Let u: E —» E be an endomorphism of some module E. We can form the

descending sequence
ImyuoImuw?* >Imu®> ...
If E is Artinian, this sequence stabilizes, and we have

Im " = Imu"*! for all sufficiently large n.

We call this submodule u®(E), or Im u®.
Similarly, we have an ascending sequence

Keruc Keru? c Keru® c ---
which stabilizes if E is Noetherian, and in this case we write

Ker u® = Ker u" for n sufficiently large.

Proposition 7.3. (Fitting’s Lemma). Assume that E is Noetherian and
Artinian. Let u € End(E). Then E has a direct sum decomposition

E =Imu* @ Ker u”™.

Furthermore, the restriction of u to Im u® is an automorphism, and the restric-
tion of u to Ker u® is nilpotent.

Proof. Choose n such that Im u® = Im «" and Ker u® = Ker u". We
have

Imu® n Ker u® = {0},
for if x lies in the intersection, then x = u"(y) for some y € E, and then

0 = u"(x) = u®"(y). So y e Ker u?" = Ker u", whence x = u"(y) = 0.
Secondly, let x € E. Then for some y € u"(E) we have

u'(x) = u'(y).
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Then we can write
x =x —u'(y) + u'(y)

which shows that E = Im u® + Ker u®. Combined with the first step of the
proof, this shows that E is a direct sum as stated.

The final assertion is immediate, since the restriction of u to Im u® is sur-
jective, and its kernel is O by the first part of the proof. The restriction of u to
Ker u® is nilpotent because Ker u® = Ker 4". This concludes the proof of the
proposition.

We now generalize the notion of a local ring to a non-commutative ring.
A ring A is called local if the set of non-units is a two-sided ideal.

Proposition 7.4. Let E be an indecomposable module over the ring A. Assume
E Noetherian and Artinian. Any endomorphism of E is either nilpotent or an
automorphism. Furthermore End(E) is local.

Proof. By Fitting’s lemma, we know that for any endomorphism u, we
have E = Im u® or E = Ker u®. So we have to prove that End(E) is local.
Let u be an endomorphism which is not a unit, so u is nilpotent. For any
endomorphism v it follows that uv and vu are not surjective or injective respec-
tively, so are not automorphisms. Let u,, u, be endomorphisms which are not
units. We have to show u; + u, is not a unit. If it is a unit in End(E), let
v; = u(u; + u,)”'. Thenv, + v, = 1. Furthermore, v, = 1 — v, is invertible
by the geometric series since v, is nilpotent. But v, is not a unit by the first part
of the proof, contradiction. This concludes the proof.

Theorem 7.5. (Krull-Remak-Schmidt). Let E # 0 be a module which is
both Noetherian and Artinian. Then E is a finite direct sum of indecomposable
modules. Up to a permutation, the indecomposable components in such a
direct sum are uniquely determined up to isomorphism.

Proof. The existence of a direct sum decomposition into indecomposable
modules follows from the Artinian condition. If first E = E, @ E,, then either
E,, E, are indecomposable, and we are done; or, say, E, is decomposable.
Repeating the argument, we see that we cannot continue this decomposition
indefinitely without contradicting the Artinian assumption.

There remains to prove uniqueness. Suppose

E=E1@"'@Er=F1@"'@Fs

where E;, F; are indecomposable. We have to show that r = s and after some
permutation, E; & F;. Let e; be the projection of E on E;, and let u; be the
projection of E on F, relative to the above direct sum decompositions. Let:

v;=eu; and w;=ue,.
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Then Y u; = id; implies that

By Proposition 7.4, End(E,) is local, and therefore some v;w; is an automor-
phism of E,. After renumbering, we may assume that v, w, is an automorphism
of E,. We claim that v, and w, induce isomorphisms between E, and F,,
This follows from a lemma.

Lemma 7.6. Let M, N be modules, and assume N indecomposable. Let
u:M — N and v: N - M be such that vu is an automorphism. Then u, v
are isomorphisms.

Proof. Let e = u(vu)”'v. Then e* = e is an idempotent, lying in End(N),
and therefore equal to 0 or 1 since N is assumed indecomposable. But e # 0
because id,, # 0 and

0 # idy, = id% = (vu) ™ 'ou(vu) ™ ‘ou.

So e = idy. Then u is injective because vu is an automorphism; v is injective
because e = idy is injective; u is surjective because e = idy; and v is surjective
because vu is an automorphism. This concludes the proof of the lemma.

Returning to the theorem, we now see that

E=F, ®E,®---®E).

Indeed, e, induces an isomorphism from F, to E,, and since the kernel of e,
isE, ®--- @ E, it follows that

F,n(E,® - ®E)=0.

Butalso,F, = E, (mod E, @ --- @ E,),so Eisthesumof F; andE, ®--- @ E,,
whence E is the direct sum, as claimed. But then

EFi~F,®- - ®F,~xE,® --@E,.

The proof is then completed by induction.

We apply the preceding results to a commutative ring A. We note that an
idempotent in A4 as a ring is the same thing as an idempotent as an element of
End(A4), viewing A as module over itself. Furthermore End(A4) ~ A. Therefore,
we-find the special cases:

Theorem 7.7. Let A be a Noetherian and Artinian commutative ring.
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(1) If A is indecomposable as a ring, then A is local.

(i) In general, A is a direct product of local rings, which are Artinian and
Noetherian.

Another way of deriving this theorem will be given in the exercises.

EXERCISES

1.

Let A be a commutative ring. Let M be a module, and N a submodule. Let
N=0Q,n---nQ, be a primary decomposition of N. Let Q; = Q;/N. Show that
0=Q,n---nQ, is a primary decomposition of 0 in M/N. State and prove the
converse.

. Let p be a prime ideal, and a, b ideals of A. If ab  p, show thata c porb < p.

3. Let q be a primary ideal. Let a, b be ideals, and assume ab < gq. Assume that b is

finitely generated. Show that a = q or there exists some positive integer n such that
b < q.

. Let A be Noetherian, and let q be a p-primary ideal. Show that there exists some n = 1

such that p" < g.

. Let A be an arbitrary commutative ring and let S be a multiplicative subset. Let p

be a prime ideal and let q be a p-primary ideal. Then p intersects S if and only if q
intersects S. Furthermore, if q does not intersect S, then S™'q is §~ 'p-primary in
STA.

. If ais an ideal of 4, let ag = S™'a. If @5: A —» S~ ' A4 is the canonical map, abbreviate

@5 '(ag) by ag N A, even though ¢ is not injective. Show that there is a bijection
between the prime ideals of A which do not intersect S and the prime ideals of S™14,
given by

pps and ps—opsnA=p.

Prove a similar statement for primary ideals instead of prime ideals.

Let a =q, n--- N g, be areduced primary decomposition of an ideal. Assume that
q;, - -, q; do not intersect S, but that q; intersects S for j > i. Show that

g = qis N - N Qjs

is a reduced primary decomposition of ag.

. Let A be a local ring. Show that any idempotent # 0 in A4 is necessarily the unit

element. (An idempotent is an element e € 4 such that e? = ¢.)

. Let A4 be an Artinian commutative ring. Prove:

(a) All prime ideals are maximal. [Hint: Given a prime ideal p, let x € 4, x(p) = 0.
Consider the descending chain (x) > (x?) o (x¥) o -+ ]
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(b) There is only a finite number of prime, or maximal, ideals. [Hint: Among all
finite intersections of maximal ideals, pick a minimal one.]

(c) The ideal N of nilpotent elements in A is nilpotent, that is there exists a positive
integer k such that N* = (0). [Hint: Letk besuch that N* = N**'. Leta = N*,
Let b be a minimal ideal s O such that ba # 0. Then b is principal and ba = b.]

(d) A is Noetherian.

(e) There exists an integer r such that

A=J]Am
where the product is taken over all maximal ideals.
(f) We have
A=TlA,

where again the product is taken over all prime ideals p.

10. Let A, B be local rings with maximal ideals m ,, mg, respectively. Let f: A — Bbe a

1.

12.

13.

14.

homomorphism. We say that f is local if /™ '(m,) = m,. Suppose this is the case.
Assume A, B Noetherian, and assume that:

1. A/m, —» B/my is an isomorphism;
2. m, — my/m} is surjective:
3. Bis a finite A-module, via f.
Prove that f is surjective. [Hint: Apply Nakayama twice.]
For an ideal q, recall from Chapter IX, §5 that % (a) is the set of primes containing a.

Let A be a commutative ring and M an A-module. Define the support of M by

supp(M) = {p € spec(4): M, # 0}.

If M is finite over A, show that supp(M) = % (ann(M)), where ann(M) is the annihilator
of M in A, that is the set of elements a € A such that aM = 0.

Let A be a Noetherian ring and M a finite A-module. Let 7 be an ideal of A such that
supp(M) C % (I). Then I"M = 0 for some n > 0.

Let A be any commutative ring, and M, N modules over A. If M is finitely presented,
and S is a multiplicative subset of 4, show that

S™! Hom (M, N) ~ Homg-,,(S™'M, S™'N).

This is usually applied when A is Noetherian and M finitely generated, in which case
M is also finitely presented since the module of relations is a submodule of a finitely
generated free module.

(a) Prove Proposition 6.7(b).
(b) Prove that the degree of the polynomial P in Theorem 6.9 is exactly r.

Locally constant dimensions

15.

Let A be a Noetherian local ring. Let E be a finite A-module. Assume that A has no
nilpotent elements. For each prime ideal p of A, let k(p) be the residue class field. If
dim,,, E,/pE, is constant for all p, show that E is free. [Hint: Letx,,...,x, € Abe
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such that the residue classes mod the maximal ideal form a basis for E/mE over k(m).
We get a surjective homomorphism

A" > E -0

Let J be the kernel. Show that J, « m A forall psoJ < pforallpand J = 0.]
16. Let A be a Noetherian local ring without nilpotent elements. Letf: E — F be a homo-
morphism of A-modules, and suppose E, F are finite free. For each prime p of A let

fior Ey/PE, — F /pF,

be the corresponding k(p)-homomorphism, where k(p) = A4,/pA, is the residue class
field at p. Assume that

dlmkw) Im f(v)

is constant.
(a) Prove that F/Im fand Im f are free, and that there is an isomorphism

FaImf@® (Flmf).

[Hint: Use Exercise 15.]

(b) Prove that Ker f is free and E ~ (Ker f) @ (Im f). [Hint: Use that finite
projective is free.]

The next exercises depend on the notion of a complex, which we have not yet formally
defined. A (finite) complex E is a sequence of homomorphisms of modules

()_>E010)Elil> ...i;En__)O
and homorphisms d': Ef— E‘*! such that d'*! o d’ = 0 for all i. Thus Im(d’) C Ker (d*1).
The homology H’ of the complex is defined to be
H = Ker(d**")/Im(d?).

By definition, H® = E® and H” = E"/Im(d"). You may want to look at the first section
of Chapter XX, because all we use here is the basic notion, and the following property,
which you can easily prove. Let E, F be two complexes. By a homomorphism f: E — F
we mean a sequence of homomorphisms

fiiEl— F!
making the diagram commutative for all i:

Ei__E_, Eitl

I e

Fi ——— Fi*l
i
F

Show that such a homomorphism f induces a homomorphism H( f): H(E) — H(F) on the
homology; that is, for each i we have an induced homomorphism

Hi(f): H(E) — H(F).
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The following exercises are inspired from applications to algebraic geometry, as for
instance in Hartshorne, Algebraic Geometry, Chapter 111, Theorem 12.8. See also Chapter
XXI, §1 to see how one can construct complexes such as those considered in the next
exercises in order to compute the homology with respect to less tractable complexes.

Reduction of a complex mod p

17.

Let 0 » K5 K! > ... » K" - 0 be a complex of finite free modules over a local
Noetherian ring 4 without nilpotent elements. For each prime p of A and module E,
let E(p) = E,/pE,, and similarly let K(p) be the complex localized and reduced mod p.
For a given integer i, assume that

dimy, H{(K(p))

is constant, where H' is the i-th homology of the reduced complex. Show that H(K)
is free and that we have a natural isomorphism

H'(K)(p) & H'(K(p)).
[Hint: First write d,, for the map induced by d' on K'(p). Write
dim,,, Ker di;) = dim,,, K'(p) — dim,,, Im 4.

Then show that the dimensions dim,,, Im di,, and dim,,, Im d{,;' must be constant.
Then apply Exercise 12.]

Comparison of homology at the special point

18.

Let A be a Noetherian local ring. Let K be a finite complex, as follows:
0-K°>...5K">0,
such that K is finite free for all i. For some index i assume that
HY(K)(m) - H'(K(m))

is surjective. Prove:
(a) This map is an isomorphism.
(b) The following exact sequences split:

0-Kerd>K ->Imd -0
0->Imd - K*!

(c) Every term in these sequences is free.

. Let 4 be a Noetherian local ring. Let K be a complex as in the previous exercise. For

some i assume that
Hi(K)(m) - H(K(m))

is surjective (or equivalently is an isomorphism by the previous exercise). Prove that
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the following conditions are equivalent:
(a) H'™ Y(K)(m) » H'~(K(m)) is surjective.
(b) H'™}(K)(m) - H'~*(K(m)) is an isomorphism.
(c) H(K) is free.
[Hint: Lift bases until you are blue in the face.]
(d) If these conditions hold, then each one of the two inclusions

Imd~! < Kerd < K!

splits, and each one of these modules is free. Reducing mod m yields the
corresponding inclusions
Imdi,' < Kerd}

(m)

< Ki(m),

and induce the isomorphism on cohomology as stated in (b). [Hint: Apply
the preceding exercise. ]



CHAPTER XI

Real Fields

§1. ORDERED FIELDS

Let K be a field. An ordering of K is a subset P of K having the following
properties:

ORD 1. Given x € K, we have either x e P, or x = 0, or —x € P, and these
three possibilities are mutually exclusive. In other words, K is the
disjoint union of P, {0}, and —P.

ORD 2. Ifx,yeP, thenx + yand xyeP.

We shall also say that X is ordered by P, and we call P the set of positive
elements.

Let us assume that K is ordered by P. Since 1 # 0 and 1 = 1% = (—1)?
we see that 1 e P. By ORD 2, it follows that 1 + -.- + 1€ P, whence K has
characteristic 0. If xe P, and x # 0, then xx~! = 1 P implies that x~ ! e P.

Let x, ye K. We define x < y(or y > x)to mean that y — xeP. If x <0
we say that x is negative. This means that — x is positive. One verifies trivially
the usual relations for inequalities, for instance:

x<y and y<z implies x <z,

x<y and z>0 implies Xz < yz,
L 1 1

x<y and x,y>0 implies 5 < >

We define x < ytomeanx < yorx = y. Thenx £ yand y < x imply x = y.
If K is ordered and x € K, x # 0, then x? is positive because x? = (—x)?
and either x € P or —x € P. Thus a sum of squares is positive, or 0.

Let E be a field. Then a product of sums of squares in E is a sum of squares.
If a, b e E are sums of squares and b # 0 then a/b is a sum of squares.

449
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The first assertion is obvious, and the second also, from the expression
a/b = ab(b™ ')~

If E has characteristic # 2, and —1 is a sum of squares in E, then every
element a € E is a sum of squares, because 4a = (1 + a)> — (1 — a)*.

If K is a field with an ordering P, and F is a subfield, then obviously, P N F
defines an ordering of F, which is called the induced ordering.

We observe that our two axioms ORD 1 and ORD 2 apply to a ring. If
A is an ordered ring, with 1 # 0, then clearly 4 cannot have divisors of 0, and
one can extend the ordering of A to the quotient field in the obvious way: A
faction is called positive if it can be written in the form a/b with a, be A and
a, b > 0. One verifies trivially that this defines an ordering on the quotient
field.

Example. We define an ordering on the polynomial ring R[¢] over the
real numbers. A polynomial

f) = a,t" + - + a

with a, # 0 is defined to be positive if a, > 0. The two axioms are then trivially
verified. We note that ¢t > a for all a e R. Thus ¢ is infinitely large with respect
to R. The existence of infinitely large (or infinitely small) elements in an ordered
field is the main aspect in which such a field differs from a subfield of the real
numbers.

We shall now make some comment on this behavior, i.e. the existence of
infinitely large elements.

Let K be an ordered field and let F be a subfield with the induced ordering.
Asusual,we put |x] = xifx > Oand |[x| = —xif x < 0. We say that an element
o in K is infinitely large over F if |«| = x for all x e F. We say that it is infinitely
smallover F if 0 < |a| < |x|forall x e F, x # 0. We see that a is infinitely large
if and only if &~ ! is infinitely small. We say that K is archimedean over F if K
has no elements which are infinitely large over F. An intermediate field F,,
K D F; D F, is maximal archimedean over F in X if it is archimedean over F,
and no other intermediate field containing F, is archimedean over F. If F; is
archimedean over F and F; is archimedean over F; then F, is archimedean over
F. Hence by Zorn’s lemma there always exists a maximal archimedean subfield
F, of K over F. We say that F is maximal archimedean in X if it is maximal
archimedean over itself in K.

Let K be an ordered field and F a subfield. Let o be the set of elements of K
which are not infinitely large over F. Then it is clear that o is a ring, and that for
any x e K, we have a or a~ ! € 0. Hence o is what is called a valuation ring,
containing F. Let m be the ideal of all « € K which are infinitely small over F.
Then m is the unique maximal ideal of o, because any element in o which is not
in m has an inverse in 0. We call o the valuation ring determined by the ordering
of K|/F.
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Proposition 1.1. Let K be an ordered field and F a subfield. Let o be the
valuation ring determined by the ordering of K/F, and let m be its maximal
ideal. Then o/m is a real field.

Proof. Otherwise, we could write
—1=Yal+a

with o;€ 0 and aem. Since ) of is positive and a is infinitely small, such a
relation is clearly impossible.

§2. REAL FIELDS

A field K is said to be real if —1 is not a sum of squares in K. A field K is
said to be real closed if it is real, and if any algebraic extension of K which is real
must be equal to K. In other words, K is maximal with respect to the property
of reality in an algebraic closure.

Proposition 2.1. Let K be a real field.

(i) If ae K, then K(\/a) or K(\/ —a) is real. If a is a sum of squares in K,
then K(\/c_z) is real. If K(\/c_z) is not real, then —a is a sum of squares
inK.

(it) If f is an irreducible polynomial of odd degree n in K[ X and if a is a root
of f, then K(a) is real.

Proof. LetaeK. Ifaisasquarein K, then K(\/E) = K and hence is real by
assumption. Assume that ais not a squarein K. If K (\/2) 1s not real, then there
exist b;, ¢; € K such that

1 =Y (b + e
=Y (b + 2¢;bii/a + cta).

Since ,/a is of degree 2 over K, it follows that

—1=Yb+a) i

If a is a sum of squares in K, this yields a contradiction. In any case, we con-
clude that

B RPN
a———zCi2

is a quotient of sums of squares, and by a previous remark, that —a is a sum of
squares. Hence K(Va) is real, thereby proving our first assertion.
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As to the second, suppose K(a) is not real. Then we can write

-1= Z gi(“)z

with polynomials g; in K[X] of degree < n — 1. There exists a polynomial h
in K[ X] such that

—1 =Y g(X)* + h(X)f(X).

The sum of g,(X)? has even degree, and this degree must be > 0, otherwise — 1
is a sum of squares in K. This degree is < 2n — 2. Since f has odd degree n, it
follows that h has odd degree < n — 2. If f is a root of h then we see that —1
is a sum of squares in K(f). Since deg h < deg f, our proof is finished by
induction.

Let K be a real field. By a real closure we shall mean a real closed field L
which is algebraic over K.

Theorem 2.2. Let K be a real field. Then there exists a real closure of K.
If R is real closed, then R has a unique ordering. The positive elements are
the squares of R. Every positive element is a square, and every polynomial of
odd degree in R[X] has a root in R. We have R* = R(V=1).

Proof. By Zorn’s lemma, our field K is contained in some real closed field
algebraic over K. Now let R be a real closed field. Let P be the set of non-zero
elements of R which are sums of squares. Then P is closed under addition and
multiplication. By Proposition 2.1, every element of P is a square in R, and given
a€R,a # 0,we must have ae P or —a € P. Thus P defines an ordering. Again
by Proposition 2.1, every polynomial of odd degree over R has a root in R. Our
assertion follows by Example 5 of Chapter VI, §2.

Corollary 2.3. Let K be a real field and a an element of K which is not a
sum of squares. Then there exists an ordering of K in which a is negative.

Proof. The field K(,/ —a) is real by Proposition 1.1 and hence has an
ordering as a subfield of a real closure. In this ordering, —a > 0 and hence a is
negative.

Proposition 2.4. Let R be a field such that R # R* but R* = R(/ —1). Then
R is real and hence real closed.

Proof. Let P be the set of elements of R which are squares and # 0. We
contend that P is an ordering of R. Let ae R, a # 0. Suppose that a is not a
square in R. Let a be a root of X? — a = 0. Then R(2)) = R(\/j), and hence
there exist ¢, d € R such that « = ¢ + d\/——l . Then

o =c? 4 2cd /-1 - d>
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Since 1, ./ —1 are linearly independent over R, it follows that ¢ = 0 (because
a¢ R?), and hence —a is a square.

We shall now prove that a sum of squares is a square. For simplicity, write
i= \/—_1 . Since R(i) is algebraically closed, given a, b € R we can find ¢,d e R
such that (¢ + di)> = a + bi. Thena = ¢? — d* and b = 2cd. Hence

a® + b = (2 + d*P,

as was to be shown.
Ifae R, a # 0, then not both a and —a can be squares in R. Hence P is an
ordering and our proposition is proved.

Theorem 2.5. Let R be a real closed field, and f(X) a polynomial in R[X].
Let a, be R and assume that f(a) <0 and f(b) > 0. Then there exists ¢
between a and b such that f(c) = 0.

Proof. Since R(\/ —1) is algebraically closed, it follows that [ splits into a
product of irreducible factors of degree 1 or 2. If X? + aX + B is irreducible
(o, f € R) then it is a sum of squares, namely

(xe3) +(r-%)

and we must have 48 > «? since our factor is assumed irreducible. Hence the
change of sign of f must be due to the change of sign of a linear factor, which is
trivially verified to be a root lying between a and b.

Lemma 2.6. Let K be a subfield of an ordered field E. Let a € E be algebraic
over K, and a root of the polynomial

f(X)=X"+a,_ X" '+ +a,

with coefficients in K. Then |a| £ 1 + |a,_,| + -+ + |ao].

Proof. 1If || < 1, the assertion is obvious. If |a| > 1, we express |a|" in
terms of the terms of lower degree, divide by |«|"" !, and get a proof for our
lemma.

Note that the lemma implies that an element which is algebraic over an
ordered field cannot be infinitely large with respect to that field.

Let f(X) be a polynomial with coefficients in a real closed field R, and
assume that f has no multiple roots. Let u < v be elements of R. By a Sturm
sequence for f over the interval [u, v] we shall mean a sequence of polynomials

S:{f=f0,fl=f1,...,fm}

having the following properties:
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ST 1. The last polynomial f,, is a non-zero constant.

ST 2. There is no point x € [u, v] such that f(x) = f;,(x) = 0 for any
value0 <j<m-— 1L

ST3. If xe[u, v] and f(x) = O for some j = 1,...,m — 1, then f;_;(x)
and f;, ;(x) have opposite signs.

ST 4. We have f(u) # Oand f(v) # Oforallj=0,...,m

For any x € [u, v] which is not a root of any polynomial f; we denote by
Ws(x) the number of sign changes in the sequence

{f(X), fl(x)7 et fm(x)},
and call Wy(x) the variation of signs in the sequence.
Theorem2.7. (Sturm’s Theorem). The number of roots of f between u and v
is equal to Wy(u) — Wy(v) for any Sturm sequence S.

Proof. We observe that if o, < a, < --- < o, is the ordered sequence of
roots of the polynomials f;in [u, v] (j = 0, ..., m — 1), then Wy(x) is constant
on the open intervals between these roots, by Theorem 2.5. Hence it will suffice
to prove that if there is precisely one element « such that u < o < vand ais a
root of some f;, then Wy(u) — Ws(v) = 1 if a is a root of f, and 0 otherwise.
Suppose that « is a root of some f;, for 1 <j < m — 1. Then f;_,(a), f;+ ()
have opposite signs by ST 3, and these signs do not change when we replace «
by u or v. Hence the variation of signs in

{fi- 1), f(w), fi+1)} and  {f;_1(), fi(v), f;+:1(0)}
is the same, namely equal to 2. If o is not a root of f, we conclude that
Ws(u) = Ws(v).

If a is a root of f, then f(u) and f(v) have opposite signs, but f'(u) and f'(v)
have the same sign, namely, the sign of f'(x). Hence in this case,

Ws(u) = Wy(v) + L.
This proves our theorem.

It is easy to construct a Sturm sequence for a polynomial without multiple
roots. We use the Euclidean algorithm, writing

=9/ -5
fa=9:/1i— f5

fm—Z = gm—lfm—l - fm’
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using /" = f,. Since f, f" have no common factor, the last term of this sequence
is non-zero constant. The other properties of a Sturm sequence are trivially
verified, because if two successive polynomials of the sequence have a com-
mon zero, then they must all be 0, contradicting the fact that the last one is not.

Corollary 2.8. Let K be an ordered field, f an irreducible polynomial of
degree = 1 over K. The number of roots of f in two real closures of K inducing
the given ordering on K is the same.

Proof. We can take v sufficiently large positive and u sufficiently large
negative in K so that all roots of f and all roots of the polynomials in the Sturm
sequence lie between u and v, using Lemma 2.6. Then Wy(u) — Wy(v) is the
total number of roots of f in any real closure of K inducing the given ordering.

Theorem 2.9. Let K be an ordered field, and let R, R’ be real closures of K,
whose orderings induce the given ordering on K. Then there exists a unique
isomorphism ¢ : R —» R’ over K, and this isomorphism is order-preserving.

Proof. We first show that given a finite subextension E of R over K, there
exists an embedding of E into R over K. Let E = K(«), and let

f(X) = Irr(e, K, X).

Then f(o) = 0and the corollary of Sturm’s Theorem (Corollary 2.8) shows that
fhasaroot fin R". Thus there exists an isomorphism of K(x) on K(f) over K,
mapping « on f.

Letay, ..., o, be the distinct roots of fin R, and let S, ..., f8,, be the distinct
roots of fin R'. Say

oy < ---<a, inthe ordering of R,

B, <--- <P, inthe ordering of R".

We contend that m = n and that we can select an embedding ¢ of K(«y, .. ., a,)
into R’ such that ga; = B, for i = 1,..., n. Indeed, let y; be an element of R
such that

“,’,-2=O(i+1—0(1~ fOI‘ l:1, ,I’l—l
and let E; = K(oty,..., %, ¥1,--+, Yu—1)- By what we have seen, there exists

an embedding ¢ of E, into R’, and then oo;,, — o, is a square in R’. Hence

O'O(l <---<O'O(n.

This proves that m = n. By symmetry, it follows that m = n. Furthermore,
the condition that oo; = f; for i = 1, ..., n determines the effect of ¢ on
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K(ay, ..., o,). We contend that ¢ is order-preserving. Let ye K(a,,...,a,)
and 0 < y. Let y€ R be such that y> = y. There exists an embedding of

K(ala""an’ yl&"'ayn—I,Y)

into R’ over K which must induce ¢ on K(a, ..., a,) and is such that ¢y is a
square, hence > 0, as contended.

Using Zorn’s lemma, it is now clear that we get an isomorphism of R onto R’
over K. This isomorphism is order-preserving because it maps squares on
squares, thereby proving our theorem.

Proposition 2.10. Let K be an ordered field, K’ an extension such that there is
no relation

n
_1 = Zaiaiz
i=1

witha;e K,a; > 0,and o; € K'. Let L be the field obtained from K' by adjoining
the square roots of all positive elements of K. Then L is real.

Proof. 1If not, there exists a relation of type
—1= )Y a0}
i=1

with a;e K, a; > 0, and ;€ L. (We can take a; = 1.) Let r be the smallest
integer such that we can write such a relation with «; in a subfield of L, of type

K'(/by,..., /b))

with b;e K, b; > 0. Write
o = X; + y,-\/ET,
with x;, y; € K’(\/E, ey \/l:). Then
—1=Y af(x; + yi\/f)',)2
=Y afx} + 2xiy,~\/b>, + y2b,).
By hypothesis, \/E, is not in K'(b,, ..., \/i):: ). Hence
—1=Y axx} + ) a;by?,
contradicting the minimality of r.

Theorem 2.11. Let K be an ordered field. There exists a real closure R of K
inducing the given ordering on K.
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Proof. Take K’ = K in Proposition 2.10. Then L is real, and is contained
in a real closure. Qur assertion is clear.

Corollary 2.12. Let K be an ordered field, and K' an extension field. In order
that there exist an ordering on K' inducing the given ordering of K, it is
necessary and sufficient that there is no relation of type

witha;e K, a; > 0, and a,€ K'.

Proof. 1If there is no such relation, thenr Proposition 2.10 states that L is
contained in a real closure, whose ordering induces an ordering on K’, and the
given ordering on K, as desired. The converse is clear.

Example. Let Q? be the field of algebraic numbers. One sees at once that
Q admits only one ordering, the ordinary one. Hence any two real closures of Q
in Q* are isomorphic, by means of a unique isomorphism. The real closures of Q
in Q? are precisely those subfields of Q* which are of finite degree under Q®.
Let K be a finite real extension of Q, contained in Q*. An element o of K is a
sum of squares in K if and only if every conjugate of « in the real numbers is
positive, or equivalently, if and only if every conjugate of « in one of the real
closures of Q in Q? is positive.

Note. The theory developed in this and the preceding section is due to Artin-
Schreier. See the bibliography at the end of the chapter.

§3. REAL ZEROS AND HOMOMORPHISMS

Just as we developed a theory of extension of homomorphisms into an
algebraically closed field, and Hilbert’s Nullstellensatz for zeros in an alge-
braically closed field, we wish to develop the theory for values in a real closed
field. One of the main theorems is the following:

Theorem 3.1. Let k be a field, K = k(x,,...,x,) a finitely generated
extension. Assume that K is ordered. Let R, be a real closure of k inducing
the same ordering on k as K. Then there exists a homomorphism

@ k[xy,...,x,] = R,

over k.
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As applications of Theorem 3.1, one gets:

Corollary 3.2. Notation being as in the theorem, let y,, ..., y.€k[x] and
assume

V1 <)Vo<: - <Vm
is the given ordering of K. Then one can choose ¢ such that

Oy < < QY.

Proof. Let y;e K* be such that y? = y,.; — y;. Then K(y,,..., Vn-1)
has an ordering inducing the given ordering on K. We apply the theorem to the
ring

KXt oo X VT s s P s Vs o> Ve 1 -

Corollary 3.3. (Artin). Let k be a real field admitting only one ordering.
Let f(X,, ..., X,)€k(X) be a rational function having the property that for
all (a) = (ay, . .., a,) € R such that f(a) is defined, we have f(a) = 0. Then
f(X) is a sum of squares in k(X).

Proof. Assume that our conclusion is false. By Corollary 2.3, there exists
an ordering of k(X) in which f is negative. Apply Corollary 3.2 to the ring

k(X4 ..o X M(X)™ Y]

where h(X) is a polynomial denominator for f(X). We can find a homo-
morphism ¢ of this ring into R, (inducing the identity on k) such that ¢(f) < 0.
But

o(f) = f(@X, ..., 0X,).

contradiction. We let a; = ¢(X;) to conclude the proof.

Corollary 3.3 was a Hilbert problem. The proof which we shall describe for
Theorem 3.1 differs from Artin’s proof of the corollary in several technical
aspects.

We shall first see how one can reduce Theorem 3.1 to the case when K has
transcendence degree 1 over k, and k is real closed.

Lemma 3.4. Let R be a real closed field and let Ry be a subfield which is
algebraically closed in R (i.e. such that every element of R not in R, is tran-
scendental over R,). Then Ry, is real closed.

Proof. Let f(X) be an irreducible polynomial over R,. It splits in R into
linear and quadratic factors. Its coefficients in R are algebraic over R,, and
hence must lie in R,,. Hence f(X) is linear itself, or quadratic irreducible already
over Ry. By the intermediate value theorem, we may assume that f is positive
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definite, 1.e. f(a) > O for all ae R,. Without loss of generality, we may assume
that f(X) = X* + b? for some b e R,. Any root of this polynomial will bring

/ —1 with it and therefore the only algebraic extension of R, is RO(\/TI).
This proves that R, is real closed.

Let Ry be a real closure of K inducing the given ordering on K. Let R, be
the algebraic closure of k in Rg. By the lemma, R, is real closed.

We consider the field Ry(x,, ..., x,). If we can prove our theorem for the
ring Ry[xy, ..., x,], and find a homomorphism

W:Ro[xh"'axn] _'RO$

then we let 6 : Ry — Ry be an isomorphism over k (it exists by Theorem 2.9), and
we let ¢ = o oy to solve our problem over k. This reduces our theorem to the
case when k is real closed.

Next, let F be an intermediate field, K > F o k, such that K is of tran-
scendence degree 1 over F. Again let Ry be a real closure of K preserving the
ordering, and let Ry be the real closure of F contained in Rg. If we know our
theorem for extensions of dimension 1, then we can find a homomorphism

lp:}zl’[xla"'axn]—)I(F'

We note that the field k(yx,, ..., ¥x,) has transcendence degree < n — 1,
and is real, because it is contained in R;. Thus we are reduced inductively to
the case when K has dimension 1, and as we saw above, when k is real closed.

One can interpret our statement geometrically as follows. We can write
K = R(x, y) with x transcendental over R, and (x, y) satisfying some irreducible
polynomial f(X, Y) = 0in R[X, Y]. What we essentially want to prove is that
there are infinitely many points on the curve f(X, Y) = 0, with coordinates
lying in R, i.e. infinitely many real points.

The main idea is that we find some point (a, b) € R® such that f(a, b) = 0
but D, f(a, b) # 0. We can then use the intermediate value theorem. We see
that f(a, b + h) changes sign as h changes from a small positive to a small
negative element of R. If we take a’' € R close to a, then f(a’, b + h) also changes
sign for small i, and hence f(a’, Y) has a zero in R for all o’ sufficiently close to a.
In this way we get infinitely many zeros.

To find our point, we consider the polynomial f(x, Y)as a polynomial in one
variable Y with coefficients in R(x). Without loss of generality we may assume
that this polynomial has leading coefficient 1. We construct a Sturm sequence
for this polynomial, say

{f(x’ Y)’ fl(x’ Y)’ ] fm(xa Y)}

Let d = deg f. If we denote by A(x) = (a,_,(x), ..., ax(x)) the coefficients of
f(x, Y), then from the Euclidean alogrithm, we see that the coefficients of the
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polynomials in the Sturm sequence can be expressed as rational functions
{G(A(x))}

in terms of a,_,(x), ..., ag(x).
Let

o(x) = 1+ ag-,00) £ -+ £ ag(x) + 5,

where s is a positive integer, and the signs are selected so that each term in this
sum gives a positive contribution. We let u(x) = —u(x), and select s so that
neither u nor v is a root of any polynomial in the Sturm sequence for f. Now
we need a lemma.

Lemma 3.5. Let R be a real closed field, and {h{x)} a finite set of rational
functions in one variable with coefficients in R. Suppose the rational field
R(x) ordered in some way, so that each h{(x) has a sign attached to it. Then
there exist infinitely many special values ¢ of x in R such that hy(c) is defined
and has the same sign as h/(x), for all i.

Proof. Considering the numerators and denominators of the rational
functions, we may assume without loss of generality that the h; are polynomials.
We then write

hix) = a [ (x = ) [] px),

where the first product is extended over all roots A of h; in R, and the second
product is over positive definite quadratic factors over R. For any £ € R, p(&) is
positive. It suffices therefore to show that the signs of (x — 4) can be preserved
for all A by substituting infinitely many values o for x. We order all values of A
and of x and obtain

e < x< A<

where possibly 4, or 4, is omitted if x is larger or smaller than any 4. Any value
o of x in R selected between A, and A, will then satisfy the requirements of our
lemma.

To apply the lemma to the existence of our point, we let the rational functions
{h;(x)} consist of all coefficients a;_;(x), ..., ag(x), all rational functions
G,(A(x)), and all values f(x, u(x)), fi(x, v(x)) whose variation in signs satisfied
Sturm’s theorem. We then find infinitely many special values o of x in R which
preserve the signs of these rational functions. Then the polynomials f(a, Y)have
roots in R, and for all but a finite number of «, these roots have multiplicity 1.

It is then a matter of simple technique to see that for all but a finite number of
points on the curve, the elements x, ..., x, lie in the local ring of the homo-
morphism R[x, y] - R mapping (x, y) on (a, b) such that f(a, b) = 0 but
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D, f(a, by # 0. (Cf. for instance the example at the end of §4, Chapter X1I, and
Exercise 18 of that chapter.) One could also give direct proofs here. In this
way, we obtain homomorphisms

R[xy, ..., x,] = R,
thereby proving Theorem 3.1.

Theorem 3.6. Let k be a real field, K = k(x,,...,x,,y) =k(x,y) a
finitely generated extension such that x, . . ., x, are algebraically independent
over k, and y is algebraic over k(x). Let f(X, Y) be the irreducible polynomial
in k[X, Y] such that f(x,y) = 0. Let R be a real closed field containing k,
and assume that there exists (a, b) € R"* ") such that f(a, b) = 0 but

D, f(a,b) #0.
Then K is real.

Proof. Lett,,...,t,be algebraically independent over R. Inductively, we
can put an ordering on R(t,, ..., t,) such that each ¢, is infinitely small with
respect to R, (cf. the example in §1). Let R’ be a real closure of R(t,,...,1t,)
preserving the ordering. Let u; = a; + t;foreachi=1,...,n Thenf(u, b + h)
changes sign for small h positive and negative in R, and hence f(u, Y) has a
root in R’,say v. Since f is irreducible, the isomorphism of k(x) on k(u) sending
x; on u; extends to an embedding of k(x, y) into R’, and hence K is real, as was to
be shown.

In the language of algebraic geometry, Theorems 3.1 and 3.6 state that the
function field of a variety over a real field k is real if and only if the variety has a
simple point in some real closure of k.

EXERCISES

1. Let o be algebraic over Q and assume that Q(«) is a real field. Prove that o is a sum of
squares in Q(a) if and only if for every embedding ¢ of Q(«) in R we have oo > 0.

2. Let F be a finite extension of Q. Let ¢:F — Q be a Q-linear functional such that
@(x*) > Oforallxe F,x # 0. Letae F,a # 0. If p(ax?) = Ofor all x € F, show that « is
a sum of squares in F, and that F is totally real, i.e. every embedding of F in the complex
numbers is contained in the real numbers. [Hint: Use the fact that the trace gives an
identification of F with its dual space over Q, and use the approximation theorem of
Chapter XII, §1.]
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3.

Leta <t < fbeareal interval, and let f(t) be a real polynomial which is positive on this
interval. Show that f(t) can be written in the form

QO+ Y (t—0Q2+ Y (B— 10D

where Q* denotes a square, and ¢ = 0. Hint: Split the polynomial, and use the identity:

(t—a*B-—0+ - — t)z.

(t—a)(f -1 = R

Remark. The above seemingly innocuous result is a key step in developing the
spectral theorem for bounded hermitian operators on Hilbert space. See the appendix
of [La 72} and also [La 85].

. Show that the field of real numbers has only the identity automorphism. [Hint: Show

that an automorphism preserves the ordering.]

Real places

10.

For the next exercises, cf. Krull [Kr 32] and Lang [La 53]. These exercises form a
connected sequence, and solutions will be found in [La 53].

. Let K be a field and suppose that there exists a real place of K; that is, a place ¢

with values in a real field L. Show that K is real.

. Let K be an ordered real field and let F be a subfield which is maximal archimedean

in K. Show that the canonical place of K with respect to F is algebraic over F (i.e.
if o is the valuation ring of elements of X which are not infinitely large over F, and
m is its maximal ideal, then o/m is algebraic over F).

. Let K be an ordered field and let F be a subfield which is maximal archimedean in

K. Let K' be the real closure of K (preserving the ordering), and let F’ be the real
closure of F contained in K'. Let ¢ be the canonical place of K’ with respect to F'.
Show that ¢(K') is F'-valued, and that the restriction of ¢ to K is equivalent to the
canonical place of K over F.

. Define a real field K to be quadratically closed if for all « € K either Va or

V'—a lies in K. The ordering of a quadratically closed real field K is then uniquely
determined, and so is the real closure of such a field, up to an isomorphism over XK.
Suppose that K is quadratically closed. Let F be a subfield of K and suppose that
F is maximal archimedean in K. Let ¢ be a place of K over F, with values in a
field which is algebraic over F. Show that ¢ is equivalent to the canonical place of
K over F.

. Let K be a quadratically closed real field. Let ¢ be a real place of K, taking its values

in a real closed field R. Let F be a maximal subfield of K such that ¢ is an isomorphism
on F, and identify F with ¢(F). Show that such F exists and is maximal archimedean
in K. Show that the image of ¢ is algebraic over F, and that ¢ is induced by the
canonical place of K over F.

Let K be a real field and let ¢ be a real place of K, taking its values in a real closed
field R. Show that there is an extension of ¢ to an R-valued place of a real closure
of K. [Hint: first extend ¢ to a quadratic closure of K. Then use Exercise 5.]
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I1.

12.

13.

Let K C K, C K, be real closed fields. Suppose that K is maximal archimedean in
K, and K, is maximal archimedean in K,. Show that K is maximal archimedean in
Kz.

Let K be a real closed field. Show that there exists a real closed field R containing
K and having arbitrarily large transcendence degree over K, and such that K is maximal
archimedean in R.

Let R be a real closed field. Let f|, ..., f, be homogeneous polynomials of odd
degrees in n variables over R. If n > r, show that these polynomials have a non-
trivial common zero in R. (Comments: If the forms are generic (in the sense of Chapter
IX), and n = r + 1, it is a theorem of Bezout that in the algebraic closure R? the
forms have exactly d, - - d,, common zeros, where d; is the degree of f;. You may
assume this to prove the result as stated. If you want to see this worked out, see
[La 53], Theorem 15. Compare with Exercise 3 of Chapter IX.)
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CHAPTER X"

Absolute Values

§1. DEFINITIONS, DEPENDENCE, AND
INDEPENDENCE

Let K be a field. An absolute value v on K is a real-valued function x — [ x|,
on K satisfying the following three properties:

AV 1. We have |x|, = 0 for all xe K, and |x|, = 0 if and only if x = 0.
AV 2. Forall x, ye K, we have |xy|, = |x],]¥],-
AV 3. Forallx, yeK, we have |x + y|, = |x], + |yl,-
If instead of AV 3 the absolute value satisfies the stronger condition
AV4. |x+ yl, < max(|x],, |y].)

then we shall say that it is a valuation, or that it is non-archimedean.

The absolute value which is such that | x|, = 1 for all x # 0 is called trivial.

We shall write | x| instead of | x|, if we deal with just one fixed absolute value.
We also refer to v as the absolute value.

An absolute value of K defines a metric. The distance between two elements
x, y of K in this metricis [x — y|. Thus an absolute value defines a topology on
K. Two absolute values are called dependent if they define the same topology.
If they do not, they are called independent.

We observe that |1] = |12| = |(—1)?| = |1|*> whence

"] =|—1]=1.

Also, | —x| = |x|forall xe K, and |x~'| = |x| ™! for x # 0.
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Proposition 1.1.  Let | |, and | |, be non-trivial absolute values on a field K.
They are dependent if and only if the relation

x|, <1

implies |x|, < 1. If they are dependent, then there exists a number 1 > 0
such that |x|, = |x|% for all xe K.

Proof. 1If the two absolute values are dependent, then our condition is
satisfied, because the set of x € K such that |x|; < 1 is the same as the set such
that lim x” = 0 for n - co. Conversely, assume the condition satisfied. Then
|x|; > 1 implies |x|, > 1 since |x~!|; < 1. By hypothesis, there exists an
element x, € K such that |xy]; > 1. Let a = [xo|; and b = |x,],. Let

1= log b'
log a

Letxe K,x # 0. Then|x|; = |x, [} for some number «. Ifm, n are integers such
that m/n > o« and n > 0, we have

x> Ixol7"
whence
|x"/xg 1 <1,
and thus
[x"/x5 1, < 1.
This implies that | x|, < |x,[3/". Hence
[x]2 = [xol3-
Similarly, one proves the reverse inequality, and thus one gets
|x]2 = [xo0l3

for all xe K, x # 0. The assertion of the proposition is now obvious, ie.
|xl, = [xI1.

We shall give some examples of absolute values.

Consider first the rational numbers. We have the ordinary absolute value
such that [m| = m for any positive integer m.

For each prime number p, we have the p-adic absolute value v, defined by the
formula

|p'm/n|, = 1/p"
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where r is an integer, and m, n are integers # 0, not divisible by p. One sees at
once that the p-adic absolute value is non-archimedean.

One can give a similar definition of a valuation for any field K which is the
quotient field of a principal ring. For instance, let K = k(t) where k is a field
and tis a variable over k. We have a valuation v, for each irreducible polynomial
p(t)in k[t], defined as for the rational numbers, but there is no way of normalizing
it in a natural way. Thus we select a number ¢ with 0 < ¢ < 1 and for any
rational function p’f /g where f, g are polynomials not divisible by p, we define

/g1, = ¢

The various choices of the constant ¢ give rise to dependent valuations.

Any subfield of the complex numbers (or real numbers) has an absolute
value, induced by the ordinary absolute value on the complex numbers. We shall
see later how to obtain absolute values on certain fields by embedding them into
others which are already endowed with natural absolute values.

Suppose that we have an absolute value on a field which is bounded on the
prime ring (i.e. the integers Z if the characteristic is 0, or the integers mod p if
the characteristic is p). Then the absolute value is necessarily non-archimedean.

Proof. For any elements x, y and any positive integer n, we have

= nC max(|x]|, |y|)"

[CERUES) ’ (")xy

Taking n-th roots and letting n go to infinity proves our assertion. We note that
this is always the case in characteristic > 0 because the prime ring is finite!

If the absolute value is archimedean, then we refer the reader to any other
book in which there is a discussion of absolute values for a proof of the fact that
it is dependent on the ordinary absolute value. This fact is essentially useless
(and is never used in the sequel), because we always start with a concretely given
set of absolute values on fields which interest us.

In Proposition 1.1 we derived a strong condition on dependent absolute
values. We shall now derive a condition on independent ones.

Theorem 1.2. (Approximation Theorem). (Artin-Whaples). Let K be
afieldand| |, ...,| |snon-trivial pairwise independent absolute values on K.
Let x4, ..., x; be elements of K, and ¢ > 0. Then there exists x € K such that

|x — x;|; <€

for all i.
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Proof. Consider first two of our absolute values, say v, and v,. By hypo-
thesis we can find o € K such that [a|, < 1 and |«|, = 1. Similarly, we can find
peKsuchthat|f|, =2 1and|f|, < 1. Puty = f/o. Then|y|, > land|y|, < L.

We shall now prove that there exists z € K such that [z|; > 1 and [z]; <1
for j = 2,...,s. We prove this by induction, the case s = 2 having just been
proved. Suppose we have found z € K satisfying

lzl; >1 and |[z|;<1 for j=2...,s =1

If |z|; £ 1 then the element z"y for large n will satisfy our requirements.
If |z|; > 1, then the sequence

n

z
1+

t, =

tendsto l1atv, andv;,andtendstoOatv;(j = 2,...,s — 1). Forlargen,itis then
clear that ¢, y satisfies our requirements.

Using the element z that we have just constructed, we see that the sequence
z"/(1 + z")tendsto 1 at v, and to OQat v;forj = 2,...,s. Foreachi=1,...,s
we can therefore construct an element z; which is very close to 1 at v; and very
close to 0 at v; (j # i). The element

X=2zx3 + -+ ZgX

then satisfies the requirement of the theorem.

§2. COMPLETIONS

Let K be a field with a non-trivial absolute value v, which will remain fixed
throughout this section. One can then define in the usual manner the notion of a
Cauchy sequence. It is a sequence {x,} of elements in K such that, given ¢ > 0,
there exists an integer N such that for all n, m > N we have

[ X, — Xl < €.
We say that K is complete if every Cauchy sequence converges.
Proposition 2.1.  There exists a pair (K, i) consisting of a field K,,, complete
under an absolute value, and an embedding i: K — K, such that the absolute

value on K is induced by that of K, (i.e. | x|, = |ix]| for x € K), and such that iK
is dense in K,. If (K., i) is another such pair, then there exists a unique
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isomorphism ¢ : K, — K preserving the absolute values, and making the
following diagram commutative:

K———*K’

\ S

Proof. The uniqueness is obvious. One proves the existence in the well-
known manner, which we shall now recall briefly, leaving the details to the reader.

The Cauchy sequences form a ring, addition and multiplication being taken
componentwise.

One defines a null sequence to be a sequence {x,} such that lim x, = 0. The

n—w
null sequences form an ideal in the ring of Cauchy sequences, and in fact form a
maximal ideal. (If a Cauchy sequence is not a null sequence, then it stays away
from O for all n sufficiently large, and one can then take the inverse of almost all
itsterms. Upto a finite number of terms, one then gets again a Cauchy sequence.)

The residue class field of Cauchy sequences modulo null sequences is the
field K,. We embed K in K, “on the diagonal”, i.e. send x € K on the sequence
(x,x,x,...).

We extend the absolute value of K to K, by continuity. If {x,} is a Cauchy
sequence, representing an element ¢ in K, we define |£| = lim|x,|. It is easily
proved that this yields an absolute value (independent of the choice of repre-
sentative sequence {x,} for £), and this absolute value induces the given one on K.

Finally, one proves that K, is complete. Let {&,} be a Cauchy sequence in
K,. For each n, we can find an element x, € K such that |£, — x,| < 1/n. Then
one verifies immediately that {x,} is a Cauchy sequence in K. We let & be its
limit in K,. By a three-e¢ argument, one sees that {£,} converges to &, thus
proving the completeness.

A pair (K,, i) as in Proposition 2.1 may be called a completion of K. The
standard pair obtained by the preceding construction could be called the
completion of K.

Let K have a non-trivial archimedean absolute value v. If one knows that the
restriction of v to the rationals is dependent on the ordinary absolute value, then
the completion K, is a complete field, containing the completion of Q as a
closed subfield, i.e. containing the real numbers R as a closed subfield. It will be
worthwhile to state the theorem of Gelfand-Mazur concerning the structure of
such fields. First we define the notion of normed vector space.

Let K be a field with a non-trivial absolute value, and let E be a vector space
over K. By a norm on E (compatible with the absolute value of K) we shall
mean a function ¢ — |¢| of E into the real numbers such that:

NO1. |¢|=0foralléeE,and = Oifand onlyif &£ = 0
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NO 2. Forallx € K and ¢ € E we have |x¢| = [1|4].
NO3. If¢ EeEthen|E+ & Z €+ |

Twonorms| |, and| |, are called equivalent if there exist numbers Cy, C, > 0
such that for all £ € E we have

Cilély = 18l = G L]

Suppose that E is finite dimensional, and let w,..., ®, be a basis of E
over K. If we write an element

§=XIO)1 + -+ X0,
in terms of this basis, with x; € K, then we can define a norm by putting

&1 = max| x|,

i

The three properties defining a norm are trivially satisfied.

Proposition 2.2. Let K be a complete field under a non-trivial absolute value,
and let E be a finite-dimensional space over K. Then any two norms on E
(compatible with the given absolute value on K) are equivalent.

Proof. We shall first prove that the topology on E is that of a product space,
ie ifwy,..., w,is a basis of E over K, then a sequence

= X, + oot X, aeK,

is a Cauchy sequence in E only if each one of the n sequences x{" is a Cauchy
sequence in K. We do this by induction on n. It is obvious for n = 1. Assume
n = 2. We consider a sequence as above, and without loss of generality, we may
assume that it converges to 0. (If necessary, consider & — &® for v, u — 00.)
We must then show that the sequences of the coefficients converge to 0 also.
If this is not the case, then there exists a number a > 0 such that we have for
some j,sayj = 1,

[xP] > a

for arbitrarily large v. Thus for a subsequence of (v), £*/x{” converges to 0, and
we can write

f(v) x(zv) x:'\')

x(lv) 1 x(lv) 2 n

x{

We let # be the right-hand side of this equation. Then the subsequence 7
converges (according to the left-hand side of our equation). By induction, we
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conclude that its coefficients in terms of w,, ..., w, also converge in K, say to
V1, ..., ¥n. Taking the limit, we get

Wy = Y05 + -+ Y0y,

contradicting the linear independence of the w;.

We must finally see that two norms inducing the same topology are equivalent.
Let| |, and| |, be these norms. There exists a number C > 0 such that for any
& e E we have

|€]; £ C implies [&], £ 1

Letae K besuchthat 0 < |a| < 1. For every ¢ € E there exists a unique integer
s such that

Clal < |a¢|; £ C.
Hence |a*¢|, £ 1 whence we get at once
1<), = C_1|a|_l|f|1-

The other inequality follows by symmetry, with a similar constant.

Theorem 2.3. (Gelfand-Mazur). Let A be a commutative algebra over the
real numbers, and assume that A contains an element j such that j> = —1. Let
C = R + Rj. Assume that A is normed (as a vector space over R), and that
lxy| = |x| |y| for all x, y € A. Given x, € A, xy % 0, there exists an element
¢ € C such that xy — c is not invertible in A.

Proof. (Tornheim). Assume that x, — z is invertible for all zeC.
Consider the mapping f : C —» 4 defined by

f@)=(xo—2)7".

It is easily verified (as usual) that taking inverses is a continuous operation.
Hence f is continuous, and for z # 0 we have

1 1
f@) =2 oz = )7 = .

2\ X _
z

From this we see that f(z) approaches 0 when z goes to infinity (in C). Hence the
map z — | f(z)] is a continuous map of C into the real numbers = 0, is bounded,
and is small outside some large circle. Hence it has a maximum, say M. Let D
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be the set of elements z € C such that |f(z)] = M. Then D is not empty; D is
bounded and closed. We shall prove that D is open, hence a contradiction.

Let ¢, be a point of D, which, after a translation, we may assume to be the
origin. We shall see that if r is real > 0 and small, then all points on the circle of
radius r lie in D. Indeed, consider the sum

S(n) = Z

nk IXO—(UV

where w is a primitive n-th root of unity. Taking formally the logarithmic

derivative of X" — " = [](X — *r) shows that
k=1

2 S
X' —-r = X-o¥v

and hence, dividing by n, and by X"~ !, and substituting x, for X, we obtain

1

0 T

If r is small (say |r/xq| < 1), then we see that

0

lim |S(n)| =

n— o

= M.

Suppose that there exists a complex number 4 of absolute value 1 such that

1
Xo — Ar

< M.

Then there exists an interval on the unit circle near A, and there exists ¢ > O such
that for all roots of unity { lying in this interval, we have

1

<M -—c
o — Cr

(This is true by continuity.) Let us take n very large. Let b, be the number of
n-th roots of unity lying in our interval. Then b,/n is approximately equal to the
length of the interval (times 27): We can express S(n) as a sum

O
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the first sum ), being taken over those roots of unity w* lying in our interval, and
the second sum being taken over the others. Each term in the second sum has
norm £ M because M is a maximum. Hence we obtain the estimate

COIEONEIT

< (M ~ 0 + (1~ b))

b
M-l
n

This contradicts the fact that the limit of [S(n)| is equal to M.

Corollary 2.4. Let K be a field, which is an extension of R, and has an

absolute value extending the ordinary absolute value on R. Then K = R or
K =_C.

Proof. Assume first that K contains C. Then the assumption that K is a
field and Theorem 2.3 imply that K = C.
If K does not contain C, in other words, does not contain a square root of

—1,welet L = K(j)where j2 = —1. We define a norm on L (as an R-space) by
putting

[x + yjl = |x] + |yl

for x, ye K. This clearly makes L into a normed R-space. Furthermore, if
z=x+ yjand 2’ = x' + y’jare in L, then

[zz'| = [xx" — yy'| + |xy" + x'y|
S x|+ [yy' |+ Ixy' ]+ (Xl
< XX+ vy T+ Ix Y]+ X1yl
S (Ix[+ [yDUXT+ 1Y'D
< lzllzl,

and we can therefore apply Theorem 2.3 again to conclude the proof.
As an important application of Proposition 2.2, we have:
Proposition 2.5. Let K be complete with respect to a nontrivial absolute

value v. If E is any algebraic extension of K, then v has a unique extension to
E. If E is finite over K, then E is complete.

Proof. In the archimedean case, the existence is obvious since we deal
with the real and complex numbers. In the non-archimedean case, we postpone
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the existence proof to a later section. It uses entirely different ideas from the
present ones. As to uniqueness, we may assume that E is finite over K. By
Proposition 2.2, an extension of v to E defines the same topology as the max
norm obtained in terms of a basis as above. Given a Cauchy sequence ¢ in E,

é(V) = X,y + -+ Xyn W

the n sequences {x,}(i = 1,..., n) must be Cauchy sequences in K by the
definition of the max norm. If {x,;} converges to an element z; in K, then it
is clear that the sequence ¢™ converges to z,w; + -+ + z,m,. Hence E is
complete. Furthermore, since any two extensions of v to E are equivalent,
we can apply Proposition 1.1, and we see that we must have A = 1, since the
extensions induce the same absolute value v on K. This proves what we want.

From the uniqueness we can get an explicit determination of the absolute
value on an algebraic extension of K. Observe first that if E is a normal extension
of K, and ¢ is an automorphism of E over K, then the function

X |ox|
is an absolute value on E extending that of K. Hence we must have
lox| = |x]|

for all x e E. If E is algebraic over K, and o is an embedding of E over K in K?,
then the same conclusion remains valid, as one sees immediately by embedding
E in a normal extension of K. In particular, if o is algebraic over K, of degree n,
andifa,, ..., o, are its conjugates (counting multiplicities, equal to the degree of
inseparability), then all the absolute values |« | are equal. Denoting by N
the norm from K(a) to K, we see that

IN(@)| = |al",

and taking the n-th root, we get:

Proposition 2.6. Let K be complete with respect to a non-trivial absolute
value. Let o be algebraic over K, and let N be the norm from K(o) to K. Let
n = [K(a):K]. Then

| = [N(@)|'"

In the special case of the complex numbers over the real numbers, we can
write & = a + bi with a, b e R, and we see that the formula of Proposition 2.6 is
a generalization of the formula for the absolute value of a complex number,

x = (a® + b2,

since a® + b? is none other than the norm of « from C to R.
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Comments and examples. The process of completion is widespread in
mathematics. The first example occurs in getting the real numbers from the
rational numbers, with the added property of ordering. I carry this process out
in full in [La 90a], Chapter IX, §3. In all other examples I know, the ordering
property does not intervene. We have seen examples of completions of fields in
this chapter, especially with the p-adic absolute values which are far away from
ordering the field. But the real numbers are nevertheless needed as the range of
values of absolute values, or more generally norms.

In analysis, one completes various spaces with various norms. Let V be a
vector space over the complex numbers, say. For many applications, one must
also deal with a seminorm, which satisfies the same conditions except that in
NO 1 we require only that || || = 0. We allow | £]] = 0 even if £ # 0.

One may then form the space of Cauchy sequences, the subspace of null
sequences, and the factor space V. The seminorm can be extended to a seminorm
on V by continuity, and this extension actually turns out to be a norm. It is a
general fact that V is then complete under this extension. A Banach space is a
complete normed vector space.

Example. Let V be the vector space of step functions on R, a step function
being a complex valued function which is a finite sum of characteristic functions
of intervals (closed, open, or semiclosed, i.e. the intervals may or may not
contain their endpoints). For f € V we define the L!-seminorm by

17 = [ 15l ax
R

The completion of V with respect to this seminorm is defined to be L'(R). One
then wants to get a better idea of what elements of L!(R) look like. It is a simple
lemma that given an L'-Cauchy sequence in V, and given £ > 0, there exists a
subsequence which converges uniformly except on a set of measure less than ¢.
Thus elements of L'(R) can be identified with pointwise limits of L!-Cauchy
sequences in V. The reader will find details carried out in [La 85].

Analysts use other norms or seminorms, of course, and other spaces, such
as the space of C™ functions on R with compact support, and norms which may
bound the derivatives. There is no end to the possible variations.

Theorem 2.3 and Corollary 2.4 are also used in the theory of Banach algebras,
representing a certain type of Banach algebra as the algebra of continuous func-
tions on a compact space, with the Gelfand-Mazur and Gelfand-Naimark theo-
rems. Cf. [Ri 60] and [Ru 73].

Arithmetic example. For p-adic Banach spaces in connection with the
number theoretic work of Dwork, see for instance Serre [Se 62], or also
[La 90b], Chapter 15.

In this book we limit ourselves to complete fields and their finite extensions.
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§3. FINITE EXTENSIONS

Throughout this section we shall deal with a field K having a non-trivial
absolute value v.

We wish to describe how this absolute value extends to finite extensions of K.
If E is an extension of K and w is an absolute value on E extending v, then we shall
write w|v. ,

If we let K, be the completion, we know that v can be extended to K, and
then uniquely to its algebraic closure K2. If E is a finite extension of K, or even
an algebraic one, then we can extend v to E by embedding E in K2 by an iso-
morphism over K, and taking the induced absolute value on E. We shall now
prove that every extension of v can be obtained in this manner.

Proposition 3.1. Let E be a finite extension of K. Let w be an absolute value
on E extending v, and let E,, be the completion. Let K,, be the closure of K in
E,, and identify E in E,,. Then E,, = EK,, (the composite field).

Proof. We observe that K, is a completion of K, and that thg'composite
field EK,, is algebraic over K, and therefore complete by Proposition 2.5. Since
it contains E, it follows that E is dense in it, and hence that E,, = EK,.

If we start with an embedding ¢: E — K% (always assumed to be over K),
then we know again by Proposition 2.5 that ¢E - K, is complete. Thus this
construction and the construction of the proposition are essentially the same, up
to an isomorphism. In the future, we take the embedding point of view. We
must now determine when two embeddings give us the same absolute value on E.

Given two embeddings o, 7: E — K2, we shall say that they are conjugate
over K, if there exists an automorphism 4 of K} over K, such that ¢ = Ar. We
see that actually A is determined by its effect on tE, or 1E - K,,.
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Proposition 3.2. Let E be an algebraic extension of K. Two embeddings
o, 7: E — K& give rise to the same absolute value on E if and only if they are
conjugate over K ,.

Proof. Suppose they are conjugate over K,. Then the uniqueness of the
extension of the absolute value from K, to K% guarantees that the induced
absolute values on E are equal. Conversely, suppose this is the case. Let
A:1E — oF be an isomorphism over K. We shall prove that A extends to an
isomorphism of 7E - K, onto ¢E - K, over K,. Since tE is dense in 7E- K,
an element x € tE - K, can be written

x = lim 7x,

with x, € E. Since the absolute values induced by ¢ and 7 on E coincide, it
follows that the sequence Atx, = ox, converges to an element of ¢E - K, which
we denote by Ax. One then verifies immediately that Ax is independent of the
particular sequence tx, used, and that the map A:tE-K, — ¢E- K, is an iso-
morphism, which clearly leaves K, fixed. This proves our proposition.

In view of the previous two propositions, if w is an extension of v to a finite
extension E of K, then we may identify E,, and a composite extension EK, of E
and K,. If N = [E: K] is finite, then we shall call

Nw = [Ew : Kv]

the local degree.

Proposition 3.3. Let E be a finite separable extension of K, of degree N. Then

N=YN,.

wlv

Proof. We can write E = K(«) for a single element a. Let f(X) be its
irreducible polynomial over K. Then over K,, we have a decomposition

JX) = fi(X) - f(X)

into irreducible factors f(X). They all appear with multiplicity 1 according to
our hypothesis of separability. The embeddings of E into K? correspond to the
maps of « onto the roots of the f;. Two embeddings are conjugate if and only if
they map o onto roots of the same polynomial f;. On the other hand, it is clear
that the local degree in each case is precisely the degree of f;. This proves our
proposition.

Proposition 3.4. Let E be a finite extension of K. Then

Y [E,:K,] < [E:K].

wiv



478 ABSOLUTE VALUES XIl, §3

If E is purely inseparable over K, then there exists only one absolute value w on
E extending v.

Proof. Let us first prove the second statement. If E is purely inseparable
over K, and p"is its inseparable degree, then «”” € K for every « in E. Hence v has
a unique extension to E. Consider now the general case of a finite extension, and
let F = E”K. Then F is separable over K and E is purely inseparable over F.
By the preceding proposition,

2 IF,:K,] = [F:K],

wtv
and for each w, we have [E, : F,] £ [E: F]. From this our inequality in the
statement of the proposition is obvious.

Whenever v is an absolute value on K such that for any finite extension E of K
we have [E: K] = ) [E, : K,] we shall say that v is well behaved. Suppose we

wly

have a tower of finite extensions, L > E > K. Let w range over the absolute
values of E extending v, and u over those of L extending v. If u|w then L,
contains E,,. Thus we have:

; [L.,:K,]=) ) [L,EJ]IE,:K,]

wlv u|lw

= ZI [E,:K,] ; [L,:E,]
< Y [E,:KJ][L:E]

wlv
< [E:K][L:E].

From this we immediately see that if v is well behaved, E finite over K, and w
extends v on E, then w is well behaved (we must have an equality everywhere).

Let E be a finite extension of K. Let p” be its inseparable degree. We recall
that the norm of an element o € K is given by the formula

Ni() =[] oo?”

where o ranges over all distinct isomorphisms of E over K (into a given algebraic

closure).

If w is an absolute value extending v on E, then the norm from E , to K, will
be called the local norm.

Replacing the above product by a sum, we get the trace, and the local trace.
We abbreviate the trace by Tr.

Proposition 3.8. Let E be a finite extension of K, and assume that v is well
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behaved. Let o€ E. Then:

Nk@) =[] Nix(@)

wlv

Tk = ¥ Trke(@)
wlv

Proof. Suppose first that E = K(a), and let f(X) be the irreducible poly-
nomial of ¢ over K. If we factor f(X) into irreducible terms over K, then

J(X) = fi(X)--- f(X)

where each f}(X) is irreducible, and the f; are distinct because of our hypothesis
that v is well behaved. The norm NE£(a) is equal to (—1)%¢#/ times the constant
term of f, and similarly for each f;. Since the constant term of f is equal to the
product of the constant terms of the f;, we get the first part of the proposition.
The statement for the trace follows by looking at the penultimate coefficient of f
and each f;.

If E is not equal to K(«), then we simply use the transitivity of the norm and
trace. We leave the details to the reader.

One can also argue directly on the embeddings. Leto,, ..., o, be thedistinct
embeddings of E into K2 over K, and let p" be the inseparable degree of E
over K. The inseparable degree of ¢E - K, over K, for any ¢ is at most equal
to p". If we separate o,,..., 0, into distinct conjugacy classes over K,,
then from our hypothesis that v is well behaved, we conclude at once that the
inseparable degree of ¢;E - K, over K, must be equal to p" also, for each i.
Thus the formula giving the norm as a product over conjugates with multi-
plicity p" breaks up into a product of factors corresponding to the conjugacy
classes over K.

Taking into account Proposition 2.6, we have:

Proposition 3.6. Let K have a well-behaved absolute value v. Let E be a
finite extension of K, and a € E. Let

for each absolute value w on E extending v. Then

[Tl = INK@)],.

wlv
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§4. VALUATIONS

In this section, we shall obtain, among other things, the existence theorem
concerning the possibility of extending non-archimedean absolute values to
algebraic extensions. We introduce first a generalization of the notion of non-
archimedean absolute value.

Let I" be a multiplicative commutative group. We shall say that an ordering
is defined in I' if we are given a subset S of I" closed under multiplication such
that I is the disjoint union of S, the unit element 1, and the set S~ ! consisting of
all inverses of elements of S.

If o, BeT we define « < B to mean af~' €S. We have « < 1 if and only if
a € S. One easily verifies the following properties of the relation <:

1. For o, fe " we have a < f, or a = f, or < a, and these possibilities
are mutually exclusive.

2. o < fimplies ay < By for any yeT.
3. « < fand B < y implies « < .

(Conversely, a relation satisfying the three properties gives rise to a subset S
consisting of all elements < 1. However, we don’t need this fact in the sequel.)

It is convenient to attach to an ordered group formally an extra element 0,
such that Oz = 0,and 0 < a for all « e I'. The ordered group is then analogous
to the multiplicative group of positive reals, except that there may be non-
archimedean ordering.

Ifa eI’ and n is an integer # 0, such that «" = 1, then « = 1. This follows at
once from the assumption that S is closed under multiplication and does not
contain 1. In particular, the map a+ o" is injective.

Let K be a field. By a valuation of K we shall mean a map x — |x| of K into
an ordered group I', together with the extra element 0, such that:

VAL 1. |x|=0ifand onlyifx = 0.
VAL 2. |xy| = |x]||y]|for all x, ye K.
VAL3. |x + y| < max(|x],|y|).

We see that a valuation gives rise to a homomorphism of the multiplicative
group K*into I'. The valuation is called trivial if it maps K*on 1. If the map
giving the valuation is not surjective, then its image is an ordered subgroup of I,
and by taking its restriction to this image, we obtain a valuation onto an ordered
group, called the value group.

We shall denote valuations also by v. If v, v, are two valuations of K, we
shall say that they are equivalent if there exists an order-preserving isomorphism
A of the image of v, onto the image of v, such that

Ixl; = Alx];
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for all xe K. (We agree that 4(0) = 0.)
Valuations have additional properties, like absolute values. For instance,
|1] = 1 because |1]| = |1]%. Furthermore,

|+ x| = |x]|
for all xe K. Proof obvious. Also, if |x| < |y| then
lx + vyl = [yl
To see this, note that under our hypothesis, we have
Iyl =1y + x — x| £ max(|y + x|, [x]) = |x + y[ £ max(|x], [y]) = |y].
Finally, in a sum
X+ -+ x,=0,

at least two elements of the sum have the same value. This is an immediate
consequence of the preceding remark.

Let K be a field. A subring o of K is called a valuation ring if it has the
property that for any x € K we have xeo or x™ ! eo.

We shall now see that valuation rings give rise to valuations. Let o be a
valuation ring of K and let U be the group of units of 0. We contend that o isa
local ring. Indeed suppose that x, y € o are not units. Say x/yeo. Then

1+ x/y=(x+y)yeo.

Ifx + ywereaunit then 1/y € o, contradicting the assumption that y is not a unit.
Hence x + yisnotaunit. One sees trivially that for z € o, zx is not a unit. Hence
the nonunits form an ideal, which must therefore be the unique maximal ideal
of o.

Let m be the maximal ideal of o and let m* be the multiplicative system of
nonzero elements of m. Then

Kf=m*uoUum*'

is the disjoint union of m*, U, and m* ', The factor group K*/U can now be
given an ordering. If x € K*, we denote the coset xU by [x|. We put |0] = 0.
We define |x| < 1 (i.e. | x| € S) if and only if x e m*. Our set S is clearly closed
under multiplication, and if we let I' = K*/U then I is the disjoint union of S,
1, S™'. In this way we obtain a valuation of K.

We note that if x, ye K and x, y # 0, then

x| < |yl<|x/y] < l < x/yem*.

Conversely, given a valuation of K into an ordered group we let o be the
subset of K consisting of all x such that |x| < 1. It follows at once from the
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axioms of a valuation that o is a ring. If |[x| < 1then |[x™!| > 1 so that x™ ! is
not in o. If |x| = 1 then |[x~'| = 1. We see that o is a valuation ring, whose
maximal ideal consists of those elements x with | x| < 1 and whose units consist
of those elements x with | x| = 1. The reader will immediately verify that there is
a bijection between valuation rings of K and equivalence classes of valuations.

The extension theorem for places and valuation rings in Chapter VII now
gives us immediately the extension theorem for valuations.

Theorem 4.1. Let K be a subfield of a field L. Then a valuation on K has an
extension to a valuation on L.

Proof. Let o be the valuation ring on K corresponding to the given valua-
tion. Let ¢ : o — o/m be the canonical homomorphism on the residue class field,
and extend ¢ to a homomorphism of a valuation ring O of L as in §3 of Chapter
VII. Let IR be the maximal ideal of £. Since P N o contains m but does not
contain 1, it follows that ¢ No = m. Let U’ be the group of units of . Then
U' N K = U is the group of units of o. Hence we have a canonical injection

K*/U - L*/U’

which is immediately verified to be order-preserving. Identifying K*/U in
L*/U’ we have obtained an extension of our valuation of K to a valuation of L.

Of course, when we deal with absolute values, we require that the value group
be a subgroup of the multiplicative reals. Thus we must still prove something
about the nature of the value group L*/U’, whenever L is algebraic over K.

Proposition 4.2. Let L be a finite extension of K, of degree n. Let w be a
valuation of L with value group T". Let T be the value group of K. Then
TI:nH=sn

Proof. Let y,,...,y, be elements of L whose values represent distinct
cosets of I in I". We shall prove that the y; are linearly independent over K. In
a relation a;y, + --- + a,y, = 0 with a;€ K, a; # 0 two terms must have the
same value, say |a;y;| = |a;y;| with i # j, and hence

lyil = Iai_laj”yjl'

This contradicts the assumption that the values of y;, y; (i # j) represent distinct
cosets of I' in I, and proves our proposition.

Corollary 4.3. There exists an integer e = 1 such that the map 7y y*
induces an injective homomorphism of T into T'.

Proof. Take e to be the index (I : I).
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Corollary 4.4. If K is a field with a valuation v whose value group is an
ordered subgroup of the ordered group of positive real numbers, and if L is an
algebraic extension of K, then there exists an extension of v to L whose value
group is also an ordered subgroup of the positive reals.

Proof. Weknow that we can extend v to a valuation w of L with some value
group I”, and the value group I of v can be identified with a subgroup of R*.
By Corollary 4.3, every element of I'" has finite period modulo I'. Since every
element of R has a unique e-th root for every integer e = 1, we can find in an
obvious way an order-preserving embedding of I"" into R* which induces the
identity on I'. In this way we get our extension of v to an absolute value on L.

Corollary 4.5. If L is finite over K, and if T is infinite cyclic, then T is also
infinite cyclic.

Proof. Use Corollary 4.3 and the fact that a subgroup of a cyclic group is
cyclic.

We shall now strengthen our preceding proposition to a slightly stronger one.
We call (I : T') the ramification index.

Proposition 4.6. Let L be a finite extension of degree n of a field K, and let O
be a valuation ring of L. Let M be its maximal ideal, let o = O n K, and let m
be the maximal ideal of v, i.e. m = MM N o. Then the residue class degree
[O/M : o/m] isfinite. If wedenote it by f, and if e is the ramification index, then
ef <n

Proof. Lety,,...,y,berepresentatives in L* of distinct cosets of I'"/T" and
let zy, ..., z, be elements of O whose residue classes mod I are linearly inde-
pendent over o/m. Consider a relation

Z aiijyi = 0
L

with a;;€ K, not all ¢;; = 0. In an inner sum
s
2. 4iZj,
j=1

divide by the coefficient a;, having the biggest valuation. We obtain a linear
combination of z,, .. ., z; with coefficients in o, and at least one coefficient equal
to a unit. Since zy, ..., z; are linearly independent mod M over o/m, it follows
that our linear combination is a unit. Hence

= laivl

S
) aj2;
j=1
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§ (g

viewed as a sum on i, at least two terms have the same value. This contradicts
the independence of |y, |, ..., |v.| mod I just as in the proof of Proposition 4.2.

for some index v. In the sum

IIM\\

Remark. Our proof also shows that the elements {z;y;} are linearly in-
dependent over K. This will be used again later.

If w is an extension of a valuation v, then the ramification index will be
denoted by e(w|v) and the residue class degree will be denoted by f(w|v).

Proposition 4.7. Let K be a field with a valuation v, and let K < E < L be
finite extensions of K. Let w be an extension of v to E and let u be an extension
ofwto L. Then

e(u|wle(w|v) = e(u|v),
Swlw)f(wlv) = f(ulv).
Proof. Obvious.

We can express the above proposition by saying that the ramification index
and the residue class degree are multiplicative in towers.

We conclude this section by relating valuation rings in a finite extension with
the integral closure.

Proposition 4.8. Let o be a valuation ring in a field K. Let L be a finite
extension of K. Let O be a valuation ring of L lying above o, and IR its maximal
ideal. Let B be the integral closure of o in L, and let p = M B. Then D is
equal to the local ring Byp.

Proof. Itisclear that By is contained in O. Conversely, let x be an element
of ©. Then x satisfies an equation with coefficients in K, not all 0, say

a”xn+"'+a0=0, a,-GK.
Suppose that a; is the coefficient having the biggest value among the g; for the
valuation associated with the valuation ring o, and that it is the coefficient

farthest to the left having this value. Let b, = a;/a,. Then all b;€ 0 and

b,, ..., b, €I
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Divide the equation by x°. We get
_ 1 1
(b,,x"s+"'+bs+1x+l)+; bs_1+"'+b0xT_‘T =0

Let y and z be the two quantities in parentheses in the preceding equation, so
that we can write

—y=z/x and —-xy=z.

To prove our proposition it will suffice to show that y and z lie in B and that y is
not in B.

We use Proposition 3.5 of Chapter VII. If a valuation ring of L above
contains x, then it contains y because y is a polynomial in x with coefficients in

Hence such a valuation ring also contains z = —xy. If on the other hand the
valuation ring of L above contains 1/x, then it contains z because z is a
polynomial in 1/x with coefficients in . Hence this valuation ring also contains
y. From this we conclude by Chapter VII, Proposition 3.5, that y, z lie in B.

Furthermore, since xe O, and b,, ..., b,,, are in M by construction, it
follows that y cannot be in I, and hence cannot be in B. This concludes the
proof.

Corollary 4.9. Let the notation be as in the proposition. Then there is only
a finite number of valuation rings of L lying above .

Proof. This comes from the fact that there is only a finite number of
maximal ideals P of B lying above the maximal ideal of o (Corollary of Pro-
position 2.1, Chapter VII).

Corollary 4.10. Let the notation be as in the proposition. Assume in addition
that L is Galois over K. If O and O’ are two valuation rings of L lying above o,
with maximal ideals M, M’ respectively, then there exists an automorphism o
of L over K such that 60 = O’ and oIk = M'.

Proof. Let B =90 N Band P’ = O’ n B. By Proposition 2.1 of Chapter
VII, we know that there exists an automorphism o of L over K such that
o = L'. From this our assertion is obvious.

Example. Let k be a field, and let K be a finitely generated extension of
transcendence degree 1. Ifz is a transcendence base of K over k, then K is finite
algebraic over k(t). Let O be a valuation ring of K containing k, and assume that
Dis # K. Let o = O n k(t). Then o is obviously a valuation ring of k(t) (the
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condition about inverses is a fortiori satisfied), and the corresponding valuation
of k(t) cannot be trivial. Either tor¢~ ! eo. Sayteo. Then o n k[t] cannot be
the zero ideal, otherwise the canonical homomorphism o — o/m of o modulo its
maximal ideal would induce an isomorphism on k[¢] and hence an isomorphism
on k(t), contrary to hypothesis. Hence m n k[t] is a prime ideal p, generated by
an irreducible polynomial p(t). The local ring k[¢], is obviously a valuation
ring, which must be o because every element of k() has an expression of type p'u
where u is a unit in k[¢],. Thus we have determined all valuation rings of k(t)
containing k, and we see that the value group is cyclic. Such valuations will be
called discrete and are studied in greater detail below. In view of Corollary 4.5,
it follows that the valuation ring © of K is also discrete.

The residue class field o/m is equal to k[t]/p and is therefore a finite exten-
sion of k. By Proposition 4.6, it follows that £/ is finite over k (if ¢ denotes
the maximal ideal of O).

Finally, we observe that there is only a finite number of valuation rings O
of K containing k such that ¢ lies in the maximal ideal of ©. Indeed, such a
valuation ring must lie above k[¢], where p = () is the prime ideal generated by
t, and we can apply Corollary 4.9.

§5. COMPLETIONS AND VALUATIONS

Throughout this section, we deal with a non-archimedean absolute value
von a field K. This absolute value is then a valuation, whose value group I'y isa
subgroup of the positive reals. We let o be its valuation ring, m the maximal ideal.

Let us denote by K the completion of K at v, and let 8 (resp. fit) be the closure
of o (resp. m) in K. By continuity, every element of 8 has value < 1, and every
element of K which is not in # has value > 1. If xeK then there exists an
element y € K such that |x — y| is very small, and hence |x| = |y| for such an
element y (by the non-archimedean property). Hence § is a valuation ring in
K, and 1 is its maximal ideal. Furthermore,

0NnK=p0p and mNn K =m,
and we have an isomorphism
o/m— d/iit.

Thus the residue class field o/m does not change under completion.

Let E be an extension of K, and let oz be a valuation ring of E lying above o.
Let m be its maximal ideal. We assume that the valuation corresponding to og
is in fact an absolute value, so that we can form the completion E. We then have
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a commutative diagram:

g/ —— O/t

|

o/m ——— §/f

the vertical arrows being injections, and the horizontal ones being isomorphisms.
Thus the residue class field extension of our valuation can be studied over the
completions E of K.

We have a similar remark for the ramification index. Let I'(K) and I'y(K)
denote the value groups of our valuation on K and K respectively (i.e. the image
of the map x — |x| for x € K* and x € K* respectively). We saw above that
I'(K) = I'(K); in other words, the value group is the same under completion,
because of the non-archimedean property. (This is of course false in the archime-
dean case.) If E is again an extension of K and w is an absolute value of E
extending v, then we have a commutative diagram

[ (E) ——T(E)

[ (K)——T(K)

from which we see that the ramification index (I (E): T (K)) also does not
change under completion.

§6. DISCRETE VALUATIONS

A valuation is called discrete if its value group is cyclic. In that case, the
valuation is an absolute value (if we consider the value group as a subgroup of
the positive reals). The p-adic valuation on the rational numbers is discrete for
each prime number p. By Corollary 4.5, an extension of a discrete valuation to a
finite extension field is also discrete. Aside from the absolute values obtained
by embedding a field into the reals or complex numbers, discrete valuations are
the most important ones in practice. We shall make some remarks concerning
them.

Let v be a discrete valuation on a field K, and let o be its valuation ring. Let
m be the maximal ideal. There exists an element 7 of m which is such that its
value || generates the value group. (The other generator of the value group is
|n~'|.) Such an element 7 is called a local parameter for v (or for m). Every
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element x of K can be written in the form

x = un
with some unit # of o, and some integer r. Indeed, we have |x| = |n|" = |7"|
for some r € Z, whence x/n" is a unit in 0. We call r the order of x at v. Itis
obviously independent of the choice of parameter selected. We also say that x
has a zero of order r. (If r is negative, we say that x has a pole of order —r.)

In particular, we see that mis a principal ideal, generated by . As an exercise,
we leave it to the reader to verify that every ideal of o is principal, and is a power
of m. Furthermore, we observe that o is a factorial ring with exactly one prime
element (up to units), namely 7.

If x, ye K, we shall write x ~ y if |[x| =|y|. Let ;;(i=1,2,...) be a
sequence of elements of o such that m; ~ n'. Let R be a set of representatives of
o/m in o. This means that the canonical map o — o/m induces a bijection of R
onto o/nt.

Assume that K is complete under our valuation. Then every element x of o can
be written as a convergent series

X=ayg+any +a,m, + -

with a; € R, and the a; are uniquely determined by x.

This is easily proved by a recursive argument. Suppose we have written
X=ag+ -+ a,n, (modm"*1l)

then x — (g + -+ + a,m,) = n,4,y for some yeo. By hypothesis, we can
write y = a,,, + 7z with some a,,, € R. From this we get

X =4y +-- 4 Ap+ 1Ty + ¢ (mOd m"+2)’

and it is clear that the n-th term in our series tends to 0. Therefore our series
converges (by the non-archimedean behavior!). Thefactthat R contains precisely
one representative of each residue class mod m implies that the g; are uniquely
determined.

Examples. Consider first the case of the rational numbers with the p-adic
valuation v,. The completion is denoted by Q,,. Itis the field of p-adic numbers.
The closure of Z in Q, is the ring of p-adic integers Z,. We note that the prime
number p is a prime element in both Z and its closure Z,. We can select our set
of representatives R to be the set of integers (0, 1,..., p — 1). Thus every p-
adic integer can be written uniquely as a convergent sum > a,p' where g, is an
integer, 0 = a; = p — 1. This sum is called its p-adic expansion. Such sums
are added and multiplied in the ordinary manner for convergent series.
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For instance, we have the usual formalism of geometric series, and if we take
p = 3, then

-1 =~2—=2(1+3+32+---).
1-3

We note that the representatives (0, 1, ..., p — 1) are by no means the only
ones which can be used. In fact, it can be shown that Z, contains the (p — 1)-th
roots of unity, and it is often more convenient to select these roots of unity as
representatives for the non-zero elements of the residue class field.

Next consider the case of a rational field k(t), where k is any field and ¢ is
transcendental over k. We have a valuation determined by the prime element ¢
in the ring k[t]. This valuation is discrete, and the completion of k[¢] under this
valuation is the power series ring k[[t]]. In that case, we can take the elements
of k itself as repersentatives of the residue class field, which is canonically
isomorphic to k. The maximal ideal of k[[¢]] is the ideal generated by ¢.

This situation amounts to an algebraization of the usual situation arising in
the theory of complex variables. For instance, let z, be a point in the complex
plane. Let o be the ring of functions which are holomorphic in some disc around
zo. Then o is a discrete valuation ring, whose maximal ideal consists of those
functions having a zero at z,. Every element of o has a power series expansion

[e o]

f@) = ) afz - zo)"
v=m
The representatives of the residue class field can be taken to be complex numbers,
a,. Ifa, # 0, then we say that f(z) has a zero of order m. The order is the same,
whether viewed as order with respect to the discrete valuation in the algebraic
sense, or the order in the sense of the theory of complex variables. We can select a
canonical uniformizing parameter namely z — z,, and

f(2) = (z = 29)"9(2)

where g(z) is a power series beginning with a non-zero constant. Thus g(z) is
invertible.

Let K be again complete under a discrete valuation, and let E be a finite
extension of K. Let og, my be the valuation ring and maximal ideal in E lying
above o, min K. Let m be a prime element in E. If I'z and 'y are the value
groups of the valuations in E and K respectively, and

e=Tg: Ty

is the ramification index, then

|| =[],
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and the elements
i, 05ige—-1,j=0,1,2,...

have order je + iin E.

Let w,, ..., o, be elements of E such that their residue classes mod my from
a basis of og/mg. If R is as before a set of representatives of o/m in o, then the set
consisting of all elements

a,w; + -+ arWy

with a; € R is a set of representatives of og/mg in og. From this we see that every
element of o admits a convergent expansion

e—1

J i
v,}nwﬂ

HM
”MS

Thus the elements {w,IT'} form a set of generators of oz as a module over o.
On the other hand, we have seen in the proof of Proposition 4.6 that these
elements are linearly independent over K. Hence we obtain:

Proposition 6.1. Let K be complete under a discrete valuation. Let E be a
finite extension of K, and let e, f be the ramification index and residue class
degree respectively. Then

ef =[E:K].

Corollary 6.2. Let a€E, o # 0. Let v be the valuation on K and w its
extension to E. Then

ord, Ni(a) = f(w|v) ord,, a.
Proof. This is immediate from the formula
INK(@)] = ||
and the definitions.

Corollary 6.3. Let K be any field and v a discrete valuation on K. Let E be a
finite extension of K. If v is well behaved in E ( for instance if E is separable
over K), then

Y ew|v)f(w|v) = [E:K].

wlv

If E is Galois over K, then all e,, are equal to the same number e, all f,, are
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equal to the same number f, and so
efr = [E:K],
where r is the number of extensions of v to E.

Proof. Our first assertion comes from our assumption, and Proposition 3.3.
If E is Galois over K, we know from Corollary 4.10 that any two valuations of E
lying above v are conjugate. Hence all ramification indices are equal, and
similarly for the residue class degrees. Our relation efr = [E: K] is then
obvious.

§7. ZEROS OF POLYNOMIALS IN
COMPLETE FIELDS

Let K be complete under a non-trivial absolute value.

Let
JX) =[1(X — )

be a polynomial in K[ X] having leading coefficient 1, and assume the roots «;
are distinct, with multiplicities r;. Let d be the degree of f. Let g be another
polynomial with coefficients in K*, and assume that the degree of g is also d, and
that g has leading coefficient 1. We let |g| be the maximum of the absolute values
of the coefficients of g. One sees easily that if |g| is bounded, then the absolute
values of the roots of ¢ are also bounded.

Suppose that g comes close to f, in the sense that | f — g| is small. If §is
any root of g, then

[fB) = gBI=1fB) =[]l = BI

is small, and hence  must come close to some root of f. As 8 comes close to
say a = ay, its distance from the other roots of f approaches the distance of o,
from the other roots, and is therefore bounded from below. In that case, we say
that f belongs to .

Proposition 7.1.  If g is sufficiently close to f,and B, . .., P, are the roots of g
belonging to o (counting multiplicities), then s = r, is the multiplicity of o in f.

Proof. Assume the contrary. Then we can find a sequence g, of poly-
nomials approaching f with precisely s roots B¢, ..., B¢ belonging to «, but
with s # r. (We can take the same multiplicity s since there is only a finite
number of choices for such multiplicities.) Furthermore, the other roots of g also
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belong to roots of f, and we may suppose that these roots are bunched together,
according to which root of f they belong to. Sincelimg, = f, we conclude that
must have multiplicity s in f, contradiction.

Next we investigate conditions under which a polynomial has a root in a
complete field.

We assume that K is complete under a discrete valuation, with valuation ring o,
maximal ideal p. We let 7 be a fixed prime element of p.

We shall deal with n-space over 0. We denote a vector (a,, ..., a,) with
a;eoby A. If f(X,..., X,)eo[X]isa polynomial in n variables, with integral
coefficients, we shall say that A is a zero of f if f(4) = 0, and we say that A is a
zero of f mod p™ if f(4) = 0 (mod p™).

Let C = (co, ..., ¢,) beino®* 1. Let m be an integer = 1. We consider the
nature of the solutions of a congruence of type

*) ™(co + ¢1Xy + -+ ¢,x,) =0 (mod p™t1).
This congruence is equivalent with the linear congruence
(**) co+exy+--+¢,x,=0 (mod p).

If some coefficient ¢; (i = 1, ..., n)isnot = 0(mod p), then the set of solutions is
not empty, and has the usual structure of a solution of one inhomogeneous
linear equation over the field o/p. In particular, it has dimension n — 1.
A congruence (*) or (**) with some ¢; # 0 (mod p) will be called a proper
congruence.

As a matter of notation, we write D, f for the formal partial derivative of f
with respect to X;. We write

grad f(X) = (D, f(X), ..., D, f(X)).

Proposition 7.2. Let f(X)eo[X]. Let r be an integer = 1 and let A € 0™ be
such that

f(A) =0 (mod p*~ "),
D;f(A) =0 (modp 1Y), forall i=1,...,n,
D, f(A)# 0 (mod p"), forsomei=1,...,n
Let v be an integer = 0 and let B € o™ be such that
B=A (modp") and f(B)=0 (modp> '*).
A vector Y € o' satisfies

Y=B (modp™") and f(Y)=0 (modp>*")
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if and only if Y can be written in the form' Y = B + n"**C, with some C € o™
satisfying the proper congruence

f(B)+ n* grad f(B)-C =0 (mod p>*).

Proof. The proof is shorter than the statement of the proposition. Write
Y = B + n"**C. By Taylor’s expansion,
f(B+nC) = f(B) + n"*¥ grad f(B)-C (mod p**?").

To solve this last congruence mod p>"**, we obtain a proper congruence by

hypothesis, because grad f(B) = grad f(4) = 0 (mod p"~ ).
Corollary 7.3. Assumptions being as in Proposition 7.2, there exists a zero
of f in o™ which is congruent to A mod p".

Proof. We can write this zero as a convergent sum
A+n"C,+n*C, + -+
solving for Cy, C,, ... inductively as in the proposition.

Corollary 7.4. Let f be a polynomial in one variable in o[ X], and let aco
be such that f(a) = 0 (mod D) but f'(a) # 0 (mod p). Then there exists
beo, b = a(mod p) such that f(b) = 0.

Proof. Taken = 1and r = 1 in the proposition, and apply Corollary 7.3.

Corollary 7.5. Let m be a positive integer not divisible by the characteristic
of K. There exists an integer r such that for any a€ o, a = 1 (mod p"), the
equation X™ — a = 0 has a root in K.

Proof. Apply the proposition.
Example. In the 2-adic field Q,, there exists a square root of —7, ie.
v —7€Q,, because —7 =1 — 8.

When the absolute value is not discrete, it is still possible to formulate a
criterion for a polynomial to have a zero by Newton approximation. (Cf. my
paper, “On quasi-algebraic closure,” Annals of Math. (1952) pp. 373-390.

Proposition 7.6. Let K be a complete under a non-archimedean absolute
value (nontrivial). Let o be the valuation ring and let f(X) € o[ X] be a poly-
nomial in one variable. Let o, € o be such that

| f(@o)] < | f'(20)?

(here f’ denotes the formal derivative of f). Then the sequence

)
RS
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converges to a root o of f in o, and we have

lo — 0| < ff(S‘O"))Z <1
Proof. Letc = | f(ap)/f'(2o)*| < 1. We show inductively that:
L ol =1,
2. |o; — ol S
3. | flw) < 2
S| =

These three conditions obviously imply our proposition. If i = 0, they are
hypotheses. By induction, assume them for i. Then:

1. lf(“i)/f’(“i)zl = ¢ gives |o; g — oy S ¢ < 1, whence |a; ;| = 1.
2. foq — o] S max{|o,; — o, lo; — ogl} = c.

3. By Taylor’s expansion, we have

_ oo S (@) f@)?
fe) = fla) — fo m + ﬁ(f'(ai))
for some f € o, and this is less than or equal to
f) 2
Sf()

in absolute value.

Using Taylor’s expansion on f'(«;, ;) we conclude that

| f"(@iv D] =1 ()]

From this we get
f@i41)
Sl 1)2

< czi+1

as desired.

The technique of the proposition is also useful when dealing with rings, say a
local ring o with maximal ideal m such that m" = 0 for some integer r > 0.
If one has a polynomial f in o[ X] and an approximate root «, such that

f'(ap) # 0 mod m,
then the Newton approximation sequence shows how to refine o, to a root of f.
Example in several variables. Ler K be complete under a non-archimedean

absolute value. Let f(X,, . .., X,+1) € KIX] be a polynomial with coefficients
inK. Let (ay, ..., a, b) € K", Assume that f(a, b) = 0. Let D, be the
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partial derivative with respect to the (n + 1)-th variable, and assume that
D, .1 f(a, b) £ 0. Let (a) € K" be sufficiently close to (a). Then there exists an
element b of K close to b such that f(a, b) = 0.

This statement is an immediate corollary of Proposition 7.6. By multiplying
all a;, b by a suitable non-zero element of K one can change them to elements
of 0. Changing the variables accordingly, one may assume without loss of gen-
erality that a;, b € o, and the condition on the partial derivative not vanishing
is preserved. Hence Proposition 7.6 may be applied. After perturbing (a) to
(a), the element b becomes an approximate solution of f(a, X). As (a) approaches
(a), f(a, b) approaches O and D,.,f(a, b) approaches D, f(a, b) # 0.
Hence for (a) sufficiently close to (a), the conditions of Proposition 7.6 are
satisfied, and one may refine b to a root of f(a, X), thus proving the assertion.

The result was used in a key way in my paper “On Quasi Algebraic Closure”.
It is the analogue of Theorem 3.6 of Chapter XI, for real fields.

In the language of algebraic geometry (which we now assume), the result
can be reformulated as follows. Let V be a variety defined over K. Let P be a
simple point of V in K. Then there is a whole neighborhood of simple points of
Vin K. Especially, suppose that V is defined by a finite number of polynomial
equations over a finitely generated field k over the prime field. After a suitable
projection, one may assume that the variety is affine, and defined by one equa-

tion f(X(,..., X,+;) = O as in the above statement, and that the point is
P = (ay,..., a,, b) as above. One can then select a; = x; close to ag; but such
that (x;, ..., x,) are algebraically independent over k. Let y be the refinement

of b such that f(x, y) = 0. Then (x, y) is a generic point of V over k, and the
coordinates of (x, y) lie in K. In geometric terms, this means that the function
field of the variety can be embedded in K over k, just as Theorem 3.6 of Chapter
XI gave the similar result for an embedding in a real closed field, e.g. the real
numbers.

EXERCISES

1. (a) Let K be a field with a valuation. If
fXy=ay+a, X+ -+ a,X"

is a polynomial in K[ X7, define | f'| to be the max on the values |g;|(i =0, ..., n).
Show that this defines an extension of the valuation to K[X], and also that the
valuation can be extended to the rational field K(X). How is Gauss’ lemma a
special case of the above statement? Generalize to polynomials in several variables.
(b) Let f be a polynomial with complex coefficients. Define | f| to be the maximum
of the absolute values of the coefficients. Let d be an integer = 1. Show that
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there exist constants C,, C, (depending only on d) such that, if f, g are polynomials
in C[X] of degrees < d, then

Cilfligl = 1491 £ Calf 1Igl

[Hint: Induction on the number of factors of degree 1. Note that the right
inequality s trivial.]
2. Let Mg be the set of absolute values consisting of the ordinary absolute value and all
p-adic absolute values v, on the field of rational numbers Q. Show that for any rational
number a€ Q, a # 0, we have

I1 lal, = 1.
veMqQ
If K is a finite extension of Q, and My denotes the set of absolute values on K extending
those of Mg, and for each w e My we let N, be the local degree [K,, : Q,], show that
forae K, a # 0, we have

I lak-=1.

weMg

3. Show that the p-adic numbers Q, have no automorphisms other than the identity.
[Hint: Show that such automorphisms are continuous for the p-adic topology. Use
Corollary 7.5 as an algebraic characterization of elements close to 1.]

4. Let A be a principal entire ring, and let K be its quotient field. Let o be a valuation ring
of K containing 4, and assume o # K. Show that o is the local ring A, for some prime
element p. [This applies both to the ring Z and to a polynomial ring k[ X ] over a field k.]

5. Let A be the subring of polynomials f(X) € Q[X] such that the constant coefficient
of f is in Z. Show that every finitely generated ideal in A is principal, but the ideal
of polynomials in 4 with 0 constant coefficient is not principal. [Laura Wesson
showed me the above, which gives a counterexample to the exercise stated in previ-
ous editions and printings, using the valuation ring o on Q(X) containing Q and
such that X has order 1. Then o # A, for any element p of 4.]

6. Let Q, be a p-adic field. Show that Q, contains infinitely many quadratic fields of

type Q(./ —m), where m is a positive integer.
7. Show that the ring of p-adic integers Z , is compact. Show that the group of units in Z,
is compact.

8. If K is a field complete with respect to a discrete valuation, with finite residue class field,
and if o is the ring of elements of K whose orders are > 0, show that o is compact. Show
that the group of units of o is closed in o and is compact.

9. Let K be a field complete with respect to a discrete valuation, let o be the ring of integers
of K, and assume that o is compact. Let f}, f,, ... be a sequence of polynomials in n
variabies, with coefficients in 0. Assume that all these polynomials have degree < d,
and that they converge to a polynomial f (i.e. that | f — f;| - Oasi — co). Ifeach f; has
azero in o, show that f has a zero in o. If the polynomials f; are homogeneous of degree
d, and if each f; has a non-trivial zero in o, show that f has a non-trivial zero in 0. [Hint:
Use the compactness of o and of the units of o for the homogeneous case.]

(For applications of this exercise, and also of Proposition 7.6, cf. my paper “On
quasi-algebraic closure,” Annals of Math., 55 (1952), pp. 412-444.)
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10. Show that if p, p" are two distinct prime numbers, then the fields Q, and Q,. are not

11.

12.

13.

14.

15.

16.

17.

isomorphic.

Prove that the field Q, contains all (p — 1)-throots of unity. [Hint: Use Proposition 7.6,
applied to the polynomial X»~* — 1 which splits into factors of degree 1 in the residue
class field.J Show that two distinct (p — 1)-th roots of unity cannot be congruent mod p.

(a) Let f(X) be a polynomial of degree = 1 in Z[X]. Show that the values f(a) for
a € Z are divisible by infinitely many primes.

(b) Let F be a finite extension of Q. Show that there are infinitely many primes p
such that all conjugates of F (in an algebraic closure of Q,) actually are contained
in Q,. [Hint: Use the irreducible polynomial of a generator for a Galois extension
of Q containing F.]

Let K be a field of characteristic 0, complete with respect to a non-archimedean absolute
value. Show that the series

X2 3
exp(x)=1+x+2—!+-3—!+-~-
2 x3
log(1+x)=x——2-+-3——---~

converge in some neighborhood of 0. (The main problem arises when the characteristic
of the residue class field is p > 0, so that p divides the denominators n! and n. Get an
expression which determines the power of p occurring in n'.) Prove that the exp and
log give mappings inverse to each other, from a neighborhood of 0 to a neighborhood
of 1.

Let K be as in the preceding exercise, of characteristic 0, complete with respect to a non-
archimedean absolute value. For every integer n > 0, show that the usual binomial
expansion for (1 + x)'/" converges in some neighborhood of 0. Do this first assuming
that the characteristic of the residue class field does not divide n, in which case the asser-
tion is much simpler to prove.

Let F be a complete field with respect to a discrete valuation, let o be the valuation ring,
n a prime element, and assume that o/(n) = k. Prove thatifa, be oand a = b (mod n")
with r > 0 then a”" = b?" (mod n"*") for all integers n = 0.

Let F be as above. Show that there exists a system of representatives R for o/(r) in o
such that R? = R and that this system is unique (Teichmiiller). [ Hint: Let a be a residue
class in k. For each v 2 0 let a, be a representative in o of a? ~ and show that the
sequence af” converges for v — oo, and in fact converges to a representative a of a,
independent of the choices of a,.] Show that the system of representatives R thus
obtained is closed under multiplication, and that if F has characteristic p, then R is
closed under addition, and is isomorphic to k.

(a) (Witt vectors again). Let k be a perfect field of characteristic p. We use the
Witt vectors as described in the exercises of Chapter VI. One can define an
absolute value on W(k), namely |x| = p~” if x, is the first non-zero component
of x. Show that this is an absolute value, obviously discrete, defined on the ring,
and which can be extended at once to the quotient field. Show that this quotient
field is complete, and note that W(k) is the valuation ring. The maximal ideal
consists of those x such that x, = 0, i.e. is equal to pW(k).
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18.

19.

20.

(b) Assume that F has characteristic 0. Map each vector x € W(k) on the element
Y

where £, is a representative of x; in the special system of Exercise 15. Show that
this map is an embedding of W(k) into o.

(Local uniformization). Let k be a field, K a finitely generated extension of transcendence
degree 1,and o a discrete valuation ring of K over k, with maximal ideal m. Assume that
o/m = k. Let x be a generator of m, and assume that K is separable over k(x). Show that
there exists an element y € o such that K = k(x, y), and also having the following
property. Let ¢ be the place on K determined by 0. Let a = ¢(x), b = @(y) (of course
a =0). Let f(X, Y) be the irreducible polynomial in k[ X, Y] such that f(x, y) = 0.
Then D, f(a,b) # 0. [Hint: Write first K = k(x, z) where z is integral over k[x]. Let
z=12z4,...,2{n = 2) be the conjugates of z over k(x), and extend o to a valuation
ring © of k(x, z,, ..., z,). Let

z=aytax+---+ax +---

be the power series expansion of z with a; €k, and let P(x) = g, + --- + a,x". For
i=1,...,nlet

_ Zi — P r(x)
i x, .
Taking r large enough, show that y, has no pole at O but y,, ..., y, have poles at O.
The elements y,, ..., y, are conjugate over k(x). Let f(X, Y) be the irreducible poly-
nomial of (x, y) over k. Then f(x, Y) = ¢, (x)Y" + --- + Yo(x) with Y, (x)k[x]. We
may also assume ¥,(0) # 0 (since f is irreducible). Write f(x, Y) in the form

FY) =)y, yY =y 'Y — D)oy, 'Y = 1)

Show that ¥,(x)y, - - - y, = udoes not have a pole at O. If w € D, let w denote its residue
class modulo the maximal ideal of O. Then

0+ f(X, Y) = (-1y"'a(Y — 3y).

Lety = y,, 7 = b. We find that D, f(a, b) = (—1)"" 1 # 0]

Prove the converse of Exercise 17, i.e. if K = k(x, y), f(X, Y) is the irreducible poly-
nomial of (x, y) over k, and if a, bek are such that f(a, b) = 0, but D, f(a, b) # 0,
then there exists a unique valuation ring o of K with maximal ideal m such that x = a
and y = b (mod m). Furthermore, o/m = k, and x — a is a generator of m. [Hint:
If g(x, y) e k[x, y] is such that g(a, b) = 0, show that g(x, y) = (x — a)A(x, y)/B(x, y)
where A, B are polynomials such that B(a, b) # 0. If A(a, b) = O repeat the process.
Show that the process cannot be repeated indefinitely, and leads to a proof of the desired
assertion.]

(Iss’sa-Hironaka Ann. of Math 83 (1966), pp. 34—46). This exercise requires a good
working knowledge of complex variables. Let K be the field of meromorphic functions
on the complex plane C. Let O be a discrete valuation ring of K (containing the
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constants C). Show that the function z is in . [Hint: Let a;, a,, . . . be a discrete
sequence of complex numbers tending to infinity, for instance the positive integers.
Let vy, v,, ..., be a sequence of integers, 0 = v; = p — 1, for some prime number

p, such that 2, v;p' is not the p-adic expansion of a rational number. Let f be an entire
function having a zero of order v,p’ at a; for each i and no other zero. If z is not in
o, consider the quotient

-1

l_—l (z — ap*

From the Weierstrass factorization of an entire function, show that g(z) = h(z)?" "' for
some entire function h(z). Now analyze the zero of g at the discrete valuation of o in
terms of that of f and [ ] (z — a;)"** to get a contradiction.]

If U is a non-compact Riemann surface, and L is the field of meromorphic functions
on U, and if o is a discrete valuation ring of L containing the constants, show that every
holomorphic function g on U liesino. [Hint: Map ¢ : U — C,and get a discrete valua-
tion of K by composing ¢ with meromorphic functions on C. Apply the first part of the
exercise.] Show that the valuation ring is the one associated with a complex number.
[Further hint: If you don’t know about Riemann surfaces, do it for the complex plane.
Foreach ze U, let f, be a function holomorphic on U and having only a zero of order 1
at z. Iffor some z,, the function f,  has order > 1 at o, then show that o is the valuation
ring associated with z,. Otherwise, every function f, has order O at 0. Conclude that the
valuation of o is trivial on any holomorphic function by a limit trick analogous to that
of the first part of the exercise.]



Part Three

LINEAR ALGEBRA
and
REPRESENTATIONS

We shall be concerned with modules and vector spaces, going into their
structure under various points of view. The main theme here is to study a pair,
consisting of a module, and an endomorphism, or a ring of endomorphisms,
and try to decompose this pair into a direct sum of components whose structure
can then be described explicitly. The direct sum theme recurs in every chapter.
Sometimes, we use a duality to obtain our direct sum decomposition relative
to a pairing, and sometimes we get our decomposition directly. If a module
refuses to decompose into a direct sum of simple components, then there is no
choice but to apply the Grothendieck construction and see what can be ob-
tained from it.

The extension theme occurs only once, in Witt’s theorem, in a brief counter-
point to the decomposition theme.

501



CHAPTER XI I l

Matrices and Linear Maps

Presumably readers of this chapter will have had some basic acquaintance
with linear algebra in elementary courses. We go beyond such courses by pointing
out that a lot of results hold for free modules over a commutative ring. This is
useful when one wants to deal with families of linear maps, and reduction modulo
an ideal.

Note that §8 and §9 give examples of group theory in the context of linear
groups.

Throughout this chapter, we let R be a commutative ring, and we let
E, F be R-modules. We suppress the prefix R in front of linear maps and
modules.

§1. MATRICES

By an m x »n matrix in R one means a doubly indexed family of elements

ofR,(a;),(i=1,...,mandj = 1,..., n), usually written in the form
ayyp ot Gy
Aum1 " Omp

We call the elements q;; the coefficients or components of the matrix. A
1 x n matrix is called a row vector (of dimension, or size, n) and am x 1 matrix
is called a column vector (of dimension, or size, m). In general, we say that
(m, n) is the size of the matrix, or also m x n.

We define addition for matrices of the same size by components. If 4 = (a;;)
and B = (b;;) are matrices of the same size, we define A + B to be the matrix
whose ij-component is a;; + b;;. Addition is obviously associative. We define
the multiplication of a matrix 4 by an element c € R to be the matrix (ca;;),

503
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whose ij-component is ca;;. Then the set of m x n matrices in R is a module
(i.e. an R-module).

We define the product AB of two matrices only under certain conditions.
Namely, when A4 has size (m, n) and B has size (n, r), i.e. only when the size of
the rows of A is the same as the size of the columns of B. If that is the case, let
A = (a;;) and let B = (b;). We define AB to be the m x r matrix whose ik-
component 18

n
Z aijbj.
j=1

If A, B, C are matrices such that AB is defined and BC is defined, then so is
(AB)C and A(BC) and we have

(AB)C = A(BC).

This is trivial to prove. If C = (), then the reader will see at once that the
il-component of either of the above products is equal to

Z ; aijbjkck,.
J

An m x n matrix is said to be a square matrix if m = n. For example, a
1 x 1 matrix is a square matrix, and will sometimes be identified with the
element of R occurring as its single component.

For a given integer n = 1 the set of square n x n matrices forms a ring.

This is again trivially verified and will be left to the reader.
The unit element of the ring of n x n matrices is the matrix

10 0 0
0 1 0
In=: .. .
0 0
00 --- 01

whose components are equal to 0 except on the diagonal, in which case they
are equal to 1. We sometimes write I instead of I,,.
If A = (a;)) is a square matrix, we define in general its diagonal components
to be the elements a;;.
We have a natural ring-homomorphism of R into the ring of n x n matrices,
given by
c—cl,.

Thus cl,, is the square n x n matrix having all its components equal to 0 except
the diagonal components, which are equal to c¢. Let us denote the ringofn x n
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matrices in R by Mat,(R). Then Mat,(R) is an algebra over R (with respect to
the above homomorphism).

Let A = (a;;) be an m X n matrix. We define its transpose ‘A to be the matrix
(@;))(j=1,...,nandi=1,..., m). Then A is an n X m matrix. The reader
will verify at once that if A, B are of the same size, then

A+ B)="4 +'B.

If c € R then (cA) = c 4. If A, B can be multiplied, then ‘B 4 is defined and we
have

(AB) = 'B'A.
We note the operations on matrices commute with homomorphisms. More
precisely, let ¢ : R » R’ be a ring-homomorphism. If 4, B are matrices in R,

we define @A to be the matrix obtained by applying ¢ to all the components of
A. Then

oA+ B) = 9A + ¢B,  ¢(AB) = (pA)¢B),  ¢(cA) = p(c)pA,
o(‘'4) = "p(A).
A similar remark will hold throughout our discussion of matrices (for
instance in the next section).

Let A = (a;;) be a square n x n matrix in a commutative ring R. We define
the trace of A4 to be

tr(A) = Z a,-;;
i=1

in other words, the trace is the sum of the diagonal elements.
If A, Baren x nmatrices, then
tr(AB) = tr(BA).
Indeed, if A = (a;;) and B = (b;) then
tr(AB) = Z Y. ayb,; = tr(BA).
As an application, we observe that if B is an invertible n x n matrix, then

tr(B~ 1 AB) = tr(A).

Indeed, tr(B~'4B) = tr(ABB™!) = tr(A4).
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§2. THE RANK OF A MATRIX

Let k be a field and let 4 be an m x n matrix in k. By the row rank of 4 we
shall mean the maximum number of linearly independent rows of 4, and by the
column rank of 4 we shall mean the maximum number of linearly independent
columns of A. Thus these ranks are the dimensions of the vector spaces gen-
erated respectively by the rows of A and the columns of A. We contend that
these ranks are equal to the same number, and we define the rank of 4 to be
that number.

Let A!,..., A" be the columns of 4, and let 4, ..., A,, be the rows of 4.
Let ‘X = (x4, ..., x,,) have components x; € k. We have a linear map

Xt x4+ + x4,

of k™ onto the space generated by the row vectors. Let W be its kernel. Then
W is a subspace of k™ and

dim W + row rank = m.
If Y is a column vector of dimension m, then the map
X,V)»'XY=X-Y

is a bilinear map into k, if we view the 1 x 1 matrix ‘XY as an element of k.
We observe that W is the orthogonal space to the column vectors A%, ..., A",
i.e. it is the space of all X such that X - A/ = Oforallj = 1, ..., n. By the duality
theorem of Chapter I1I, we know that k™ is its own dual under the pairing

X,Y)—X-Y
and that k™/W is dual to the space generated by A!, ..., A". Hence
dim k™/W = column rank,
or
dim W + column rank = m.
From this we conclude that
column rank = row rank,

as desired.

We note that W may be viewed as the space of solutions of the system of n
linear equations

XIAI +"‘+xmAm=0,
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inmunknowns x4, .. ., x,,. Indeed, if we write out the preceding vector equation
in terms of all the coordinates, we get the usual system of n linear equations.
We let the reader do this if he or she wishes.

§3. MATRICES AND LINEAR MAPS

Let E be a module, and assume that there exists a basis ® = {&,,...,&,}
for E over R. This means that every element of E has a unique expression as a
linear combination

X=x1§1+"'+x,,f,,

with x; € R. We call (x4, ..., x,) the components of x with respect to the basis.
We may view this n-tuple as a row vector. We shall denote by X the transpose
of the row vector (x,, ..., x,). We call X the column vector of x with respect to
the basis.

We observe that if {£], ..., &} is another basis of E over R, then m = n.
Indeed, let p be a maximal ideal of R. Then E/pE is a vector space over the
field R/pR, and it is immediately clear that if we denote by &; the residue class
of ¢, mod pE, then {¢,, ..., &,} is a basis for E/pE over R/pR. Hence n is also
the dimension of this vector space, and we know the invariance of the cardinality
for bases of vector spaces over fields. Thus m = n. We shall call n the dimension
of the module E over R.

We shall view R™ as the module of column vectors of size n. It is a free
module of dimension n over R. It has a basis consisting of the unit vectors
el, ..., e"such that

e =(0,...,0,1,0,...,0)

has components 0 except for its i-th component, which is equal to 1.
An m x n matrix A gives rise to a linear map

L,:R™ - Rm
by the rule
X+ AX.

Namely, we have A(X + Y) = AX + AY and A(cX) = cAX for column
vectors X, Y and ce R.
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The above considerations can be extended to a slightly more general
context, which can be very useful. Let E be an abelian group and assume that
R is a commutative subring of

End, (E) = Homy(E, E).

Then E is an R-module. Furthermore, if 4 isanm x n matrix in R, then we get
a linear map

Ly:E® — E™

defined by a rule similar to the above, namely X — AX. However, this has to
be interpreted in the obvious way. If 4 = (a;;) and X is a column vector of
elements of E, then

Ay o A\ [ X N1
AX = o P I
Am1 " G/ \Xn Vm,

n
Where Vi = Z ainj.
ji=1

If A, B are matrices in R whose product is defined, then for any ¢ € R we
have

LAB=LALB and LCA=CLA‘
Thus we have associativity, namely
A(BX) = (AB)X.

An arbitrary commutative ring R may be viewed as a module over itself.
In this way we recover the special case of our map from R®™ into R™. Further-
more, if E is a module over R, then R may be viewed as a ring of endomorphisms
of E.

Proposition 3.1. Let E be a free module over R, and let {xy,..., x,} be a
basis. Let y,,..., Y, be elements of E. Let A be the matrix in R such that

X1 Y1
4 :)=|:
Xn Yn
Then {y,, ..., ya} is a basis of E if and only if A is invertible.

Proof. Let X, Y be the column vectors of our elements. Then AX = Y.
Suppose Y is a basis. Then there exists a matrix C in R such that CY = X.
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Then CAX = X, whence CA = I and A is invertible. Conversely, assume that
A is invertible. Then X = A~'Y and hence x,,..., x, are in the module
generated by y,,..., y,. Suppose that we have a relation

blyl + -+ bnyn =0
with b; € R. Let B be the row vector (b,, ..., b,). Then
BY =0

and hence BAX = 0. But {x,..., x,} is a basis. Hence B4 = 0, and hence
BAA~! = B = 0. This proves that the components of Y are linearly indepen-
dent over R, and proves our proposition.

We return to our situation of modules over an arbitrary commutative
ring R.

Let E, F be modules. We shall see how we can associate a matrix with a
linear map whenever bases of E and F are given. We assume that E, F are free.
Welet® ={¢;,...,¢&, and ® ={¢,,. .., &, }bebasesof E and F respectively.
Let

f:E>F
be a linear map. There exist unique elements a;; € R such that

f) =a1:& + -+ apims

f(én) = alnill + et amné;m

or in other words,
f(é;) = Z a;;¢;
i=1
(Observe that the sum is over the first index.) We define

Mg(f) = (aij)'

If x=x,& + -+ x,&, is expressed in terms of the basis, let us denote the
column vector X of components of x by Mg(x). We see that

Mg(f(x)) = Mg(f)Mg(x).

In other words, if X" is the column vector of f(x), and M is the matrix associated
with f then X" = MX. Thus the operation of the linear map is reflected by the
matrix multiplication, and we have f = L,,.
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Proposition 3.2. Let E, F, D be modules, and let 8, ®’, B" be finite bases
of E, F, D, respectively. Let

ELFS4D
be linear maps. Then
MGAg o f) = MGAQMgA[).

Proof. Let A and B be the matrices associated with the maps f, g respec-
tively, with respect to our given bases. If X is the column vector associated with
x € E, the vector associated with g(f(x)) is B(4X) = (BA)X. Hence BA is the
matrix associated with g o f. This proves what we wanted.

Corollary 3.3. Let E = F. Then
ME(dME(id) = ME(id) = I
Each matrix M$.(id) is invertible (i.e. is a unit in the ring of matrices).

Proof. Obvious.

Corollary 3.4. Let N = M%.(id). Then
MG (f) = MGGMG(fIMG (id) = NMG(f)N~".

Proof. Obvious

Corollary 3.5. Let E be a free module of dimension n over R. Let ® be a
basis of E over R. The map

[ Mg(f)

is a ring-isomorphism of the ring of endomorphisms of E onto the ring of n x n
matrices in R. In fact, the isomorphism is one of algebras over R.

We shall call the matrix Ma(f) the matrix associated with f with respect to
the basis ®.

Let E be a free module of dimension n over R. By GL(E) or Autg(E) one
means the group of linear automorphisms of E. It is the group of units in
Endg(E). By GL,(R) one means the group of invertible n x n matrices in R.
Once a basis is selected for E over R, we have a group-isomorphism

GL(E) < GL,(R)

with respect to this basis.
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Let E be as above. If
fE—-E

is a linear map, we select a basis ® and let M be the matrix associated with f
relative to B. We define the trace of f to be the trace of M, thus

tr(f) = tr(M).

If M’ is the matrix of f with respect to another basis, then there exists an in-
vertible matrix N such that M’ = N™'MN, and hence the trace is independent
of the choice of basis.

§4. DETERMINANTS

LetE,,..., E,, F be modules. A map
fE,x---xE,~»F

is said to be R-multilinear (or simply multilinear) if it is linear in each variable,
i.e. if for every index i and elements x,, ..., X;_ 1, X;+ 1, .. -, X,, X; € E;, the map

x"_)f(xl’"'5xi—1ax’xi+1""5xn)

is a linear map of E; into F.

A multilinear map defined on an n-fold product is also called n-multilinear.
IfE, =---=E, = E, we also say that f is a multilinear map on E, instead of
saying that it is multilinear on E™,

Let f be an n-multilinear map. If we take two indices i, j and i # j then
fixing all the variables except the i-th and j-th variable, we can view f as a
bilinear map on E; x E;.

Assume that E;, =-.- = E, = E. We say that the multilinear map f is
alternating if f(x,, ..., x,) = 0 whenever there exists anindex i, 1 £i<n— 1,
such that x; = x;,, (in other words, when two adjacent elements are equal).

Proposition 4.1. Let f be an n-multilinear alternating map on E. Let
Xiy..., X, € E. Then

f(...,xi,xi+1,...) = ——f(...,le,xi,...).

In other words, when we interchange two adjacent arguments of f, the value
of f changes by a sign. If x; = x; for i # j then f(xy,...,x,) = 0.
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Proof. Restricting our attention to the factors in the i-th and j-th place, with
j = i + 1, we may assume f is bilinear for the first statement. Then for all x,
y € E we have

0=fx+yx+y) = 0+ f0x)

This proves what we want, namely f(y, x) = — f(x, y). For the second asser-
tion, we can interchange successively adjacent arguments of f until we obtain
an n-tuple of elements of E having two equal adjacent arguments. This shows
that when x; = x;,i # j, then f(xy,..., x,) = 0.

Corollary 4.2. Let f be an n-multilinear alternating map on E. Let
X4,...,X, €E. Leti# jand let ae R. Then the value of f on (xy,...,X,)
does not change if we replace x; by x; + ax; and leave all other components

fixed.
Proof. Obvious.

A multilinear alternating map taking its value in R is called a multilinear
alternating form.

On repeated occasions we shall evaluate multilinear alternating maps on
linear combinations of elements of E. Let

Wi = a110;) + oo+ Ayl

W" = a,,lvl + - 4 a,,,,v,,.

Let f be n-multilinear alternating on E. Then

f(wl""awn)=f(allvl + o+ AUy e Auly + "'+annvn)'

We expand this by multilinearity, and get a sum of terms of type

a1,51) """ Qn,0(m) f(va(l)’ cevy va‘(n)),

where o ranges over arbitrary maps of {1, ..., n} into itself. If o is not a bijection
(ie. a permutation), then two arguments v, and v,; are equal for i # j, and
the term is equal to 0. Hence we may restrict our sum to permutations o.
Shuffling back the elements (v,(y), - - . , Ug(n) to their standard ordering and using
Proposition 4.1, we see that we have obtained the following expansion:

Lemma 4.3. If wy,...,w, are as above, then

f(wh ] W,,) = Z e(a)al,a(l) e an,a(n)f(vh R vn)

[

where the sum is taken over all permutations o of {1, ..., n} and (o) is the
sign of the permutation.
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For determinants, I shall follow Artin’s treatment in Galois Theory.
By an n x n determinant we shall mean a mapping

det:Mat,(R) > R
also written
D:Mat,(R) > R

which, when viewed as a function of the column vectors A?, ..., 4" of a matrix
A, is multilinear alternating, and such that D(I) = 1. In this chapter, we use
mostly the letter D to denote determinants.

We shall prove later that determinants exist. For the moment, we derive
properties.

Theoremd4.4. (Cramer’sRule). Let A',..., A" be column vectors of dimen-
sion n. Let x4, ..., x, € R be such that

x; A"+ -+ x,A"=B
for some column vector B. Then for each i we have
x;D(A*,..., A") = D(4*,...,B,..., A",

where B in this last line occurs in the i-th place.
Proof. Sayi= 1. We expand
DB, A%,..., A" = Y x;D(4%, A%, ..., A"),
j=1

and use Proposition 4.1 to get what we want (all terms on the right are equal
to 0 except the one having x, in it).

Corollary 4.5. Assume that R is a field. Then A',..., A" are linearly
dependent if and only if D(A?, ..., A") = 0.

Proof. Assume we have a relation
x AV + -+ x,A" =0

with x; € R. Then x;D(A) = 0 for all i. If some x; # 0 then D(4) = 0. Con-
versely, assume that A%, ..., A" are linearly independent. Then we can express
the unit vectors e!, ..., " as linear combinations

el = bllAl + R blnAn,

¢ = byA' + -+ by A"
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with b;; € R. But
1 =D(e!,...,e"N.

Using a previous lemma, we know that this can be expanded into a sum of
terms involving D(41, ..., A"), and hence D(4) cannot be 0.

Proposition 4.6. If determinants exist, they are unique. If A, ..., A" are
the column vectors of dimension n, of the matrix A = (a;;), then

D(Al, LAY = Z e(a)aa(l),l * oy, ns

[
where the sum is taken over all permutations o of {1, ..., n}, and €(o) is the
sign of the permutation.

Proof. Lete!, ..., e" be the unit vectors as usual. We can write
Al = a0t + o+ aye
A" =ay,e" + - + a,e.

Therefore

D(Ala cees An) = Z 6(‘)-)aa'(l),l e aa’(n),n

a

by the lemma. This proves that the value of the determinant is uniquely deter-
mined and is given by the expected formula.

Corollary 4.7. Let ¢ : R — R’ be a ring-homomorphism into a commutative
ring. If A is a square matrix in R, define @A to be the matrix obtained by
applying ¢ to each component of A. Then

@(D(4)) = D(pA).
Proof. Apply ¢ to the expression of Proposition 4.6.
Proposition 4.8. If A is a square matrix in R then
D(A) = D('A).
Proof. 1In a product

Ag1),1 *° " Agmy,n

each integer k from 1 to n occurs precisely once among the integers (1), . . ., a(n).
Hence we can rewrite this product in the form

al,a“(l) e an,o-‘l(n)'
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Since €(c) = (6~ 1), we can rewrite the sum in Proposition 4.6 in the form

Z e(a” 1)‘ll,rl(l) lpge

g

In this sum, each term corresponds to a permutation . However, as ¢ ranges
over all permutations, so does ¢~ !. Hence our sum is equal to

Z E(G)al,a(l) e an,o’(n)a

ag

which is none other than D(*4), as was to be shown.

Corollary 4.9. The determinant is multilinear and alternating with respect
to the rows of a matrix.

We shall now prove existence, and prove simultaneously one additional
important property of determinants.

When n = 1, we define D(a) = a for any a € R.

Assume that we have proved the existence of determinants for all integers
<n(n22). Let A beann x n matrix in R, A = (a;;). We let 4;; be the
(n — 1) x (n — 1) matrix obtained from A by deleting the i-th row and j-th
column. Let i be a fixed integer, 1 < i < n. We define inductively

D(A) = (_1)i+1ai1D(Ai1) + 0 (_1)i+nainD(Ain)'

(This is known as the expansion of D according to the i-th row.) We shall prove
that D satisfies the definition of a determinant.
Consider D as a function of the k-th column, and consider any term

(- 1)i+jaijD(Aij)-

Ifj # k then a;; does not depend on the k-th column, and D(A;;) depends linearly
on the k-th column. If j = k, then a;; depends linearly on the k-th column, and
D(A;;) does not depend on the k-th column. In any case our term depends
linearly on the k-th column. Since D(A)is a sum of such terms, it depends linearly
on the k-th column, and thus D is multilinear.

Next, suppose that two adjacent columns of 4 are equal, say 4* = A4**1.
Letjbeanindex # kand # k + 1. Then the matrix 4;; has two adjacent equal
columns, and hence its determinant is equal to 0. Thus the term corresponding
to an index j # k or k + 1 gives a zero contribution to D(4). The other two
terms can be written

(—1)"*ay D(Ay) + (= 1)+ ' e 1 D(A; k4 1)

The two matrices 4, and 4, ., are equal because of our assumption that the
k-th column of 4 is equal to the (k + 1)-th column. Similarly, a; = a; 44,
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Hence these two terms cancel since they occur with opposite signs. This proves
that our form is alternating, and gives:

Proposition 4.10. Determinants exist and satisfy the rule of expansion
according to rows and columns.

(For columns, we use the fact that D(4) = D('4).)

Example. We mention explicity one of the most important determinants.

Let x4, ..., x, be elements of a commutative ring. The Vandermonde deter-
minant V = V(x,, ..., x,) of these elements is defined to be
1 1 1
X1 X2 Xn
V= . ,
b xpl a1

whose value can be determined explicitly to be

v=1Il0- 5.

i<j

If the ring is entire and x; # x; for i # j, it follows that V # 0. The proof for
the stated value is done by multiplying the next to the last row by x; and subtracting
from the last row. Then repeat this step going up the rows, thus making the
elements of the first column equal to 0, except for 1 in the upper left-hand corner.
One can then expand according to the first column, and use the homogeneity
property and induction to conclude the proof of the evaluation of V.

Theorem 4.11. Let E be a module over R, and let vy, .. ., v, be elements of E.
Let A = (a;;) be a matrix in R, and let

Uy wy

Let A be an n-multilinear alternating map on E. Then
Alwy, ..., w,) = D(A) A(vy, ..., v,).
Proof. We expand
A@y 01+ + Aualny e - s Quyly + =+ + Apaly),

and find precisely what we want, taking into account D(4) = D(‘A4).
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Let E, F be modules, and let L}(E, F) denote the set of n-multilinear alter-
nating maps of E into F. If F = R, we also write L}(E, R) = LY(E). It is clear
that LX(E, F)is a module over R, i.e. is closed under addition and multiplication
by elements of R.

Corollary 4.12.  Let E be a free module over R, and let {v,, ..., v,} be a basis.
Let F be any module, and let we F. There exists a unique n-multilinear
alternating map

A,;Ex---x E>F

such that A (vq,...,0,) = w.

Proof. Without loss of generality, we may assume that E = R®, and then,
if AL, ..., A" are column vectors, we define

AJ(AL, ..., A") = D(A)w.

Then A,, obviously has the required properties.

Corollary 4.13.  If E is free over R, and has a basis consisting of n elements,
then L(E) is free over R, and has a basis consisting of 1 element.

Proof. We let A be the multilinear alternating map taking the value 1 on a
basis {v,,..., v,}. Any element ¢ € L)(E) can then be written in a unique way
as cA,, with some ¢ € R, namely ¢ = ¢(v,, ..., v,). This proves what we wanted.

Any two bases of LY(E) in the preceding corollary differ by a unit in R. In
other words, if A is a basis of L(E), then A = ¢A; = A, for some c€ R, and ¢
must be a unit. Our A, depends of course on the choice of a basis for E. When
we consider R™, our determinant D is precisely A,, relative to the standard
basis consisting of the unit vectors e!, ..., e".

It is sometimes convenient terminology to say that any basis of L}(E) is a
determinant on E. In that case, the corollary to Cramer’s rule can be stated as
follows.

Corollary 4.14. Let R be a field. Let E be a vector space of dimension n.
Let A be any determinant on E. Let v,,...,v,€ E. Inorder that {v,,...,v,}
be a basis of E it is necessary and sufficient that

A(vy,...,v,) # 0.

Proposition 4.15. Let A, B be n x n matrices in R. Then

D(AB) = D(A)D(B).
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Proof. This is actually a corollary of Theorem 4.11. We take v,,..., v,
to be the unit vectors el, ..., ", and consider

We obtain
D(w,...,w,) = D(AB)D(¢},..., €").
On the other hand, by associativity, applying Theorem 4.11 twice,
D(wy,...,w,) = D(A)D(B)D(e},.. ., e".

Since D(e’, ..., e") = 1, our proposition follows.

Let A = (a;)) be an n x n matrix in R. We let

A= (b))
be the matrix such that
b = (—1)*D(4;).

(Note the reversal of indices!)

Proposition 4.16. Let d = D(A). Then AA = AA = dl. The determinant
D(A) is invertible in R if and only if A is invertible, and then

A '=-4

o~

Proof. For any pair of indices i, k the ik-component of A4 is
by + inboy + - + @b = a; (=D ID(Ay) + -+ + ai(— 1) "D(Awy)-

If i = k, then this sum is simply the expansion of the determinant according
to the i-th row, and hence this sum is equal to d. If i # k, let A be the matrix
obtained from A by replacing the k-th row by the i-th row, and leaving all other
rows unchanged. If we delete the k-th row and the j-th column from A, we obtain
the same matrix as by deleting the k-th row and j-th column from 4. Thus

Akj = Akj’
and hence our sum above can be written

ai (= D ID(Ayy) + - + a(— 1) "D(A,,).
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This is the expansion of the determinant of 4 according to the i-th row. Hence
D(A) = 0, and our sum is 0. We have therefore proved that the ik-component
of Adisequalto d if i = k (i.e. if it is a diagonal component), and is equal to 0
otherwise. This proves that 44 = dI. On the other hand, we see at once from
the definitions that 4 = 4. Then

(AA) = 49 = U4 = dI,
and consequently, A4 = dI also, since '(dI) = dI. When d is a unit in R, then 4

isinvertible, its inverse beingd ~ ' 4. Conversely, if A isinvertible,and 44~ ! = I,
then D(4)D(A4~ ') = 1, and hence D(A) is invertible, as was to be shown.

Corollary 4.17. Let F be any R-module, and let w,, . .., w, be elements of
F. Let A = (a;;) be an n X n matrix in R. Let

apw, + -+ ayw, = Ul

aaw, + - +a,w, =0,

Then one can solve explicitly

D(A)Wl wi Uy
=Dl :|=4
D(A)w, W, v,

In particular, if v; = 0 for all i, then D(A)w; = 0 for all i. If v; = 0 for all i
and F is generated by w, ..., w,, then D(A)F = 0.

Proof. This is immediate from the relation AA = D(A)I, using the remarks
in §3 about applying matrices to column vectors whose components lie in the
module.

Proposition 4.18. Let E, F be free modules of dimension n over R. Let
f1E > F be a linear map. Let ®, ®' be bases of E, F respectively over R.
Then f is an isomorphism if and only if the determinant of its associated
matrix M3.(f) is a unit in R.

Proof. Let A = M3.(f). By definition, f is an isomorphism if and only
if there exists a linear map g : F — E such thatgo f=id and fog = id. If fis
an isomorphism,and B = M3 (g), then AB = BA = I. Taking the determinant
of the product, we conclude that D(A) is invertible in R. Conversely, if D(A)
is a unit, then we can define A~! by Proposition 4.16. This A™! is the associated
matrix of a linear map g.F — E which is an inverse for f, as desired.

Finally, we shall define the determinant of an endomorphism.
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Let E be a free module over R, and let ® be a basis. Let f: E — E be an
endomorphism of E. Let

M = Mg(f).

If ®' is another basis of E, and M’ = M$(f), then there exists an invertible
matrix N such that

M' = NMN™.

Taking the determinant, we see that D(M') = D(M). Hence the determinant
does not depend on the choice of basis, and will be called the determinant of the
linear map /. We shall give below a characterization of this determinant which
does not depend on the choice of a basis.

Let E be any module. Then we can view L(E) as a functor in the variable E
(contravariant). In fact, we can view L'(E, F) as a functor of two variables,
contravariant in the first, and covariant in the second. Indeed, suppose that

ELE

is a linear map. To each multilinear map ¢ : E™ — F we can associate the
composite map ¢ o £,

Ex- xEL5Ex...xESF
where f® is the product of f with itself n times. The map

La(f) : LE, F) - Ly(E', F)
given by
oo f®,

is obviously a linear map, which defines our functor. We shall sometimes write
f* instead of LZ(f).

In particular, consider the case when E = E’and F = R. We get an induced
map

f*:LYE) » LYE).

Proposition4.19. Let E be a free module over R, of dimension n. Let{A} be a
basis of LY(E). Let f:E — E be an endomorphism of E. Then

f*A = D(NHA.
Proof. This is an immediate consequence of Theorem 4.11. Namely, we
let {v,,..., v,} beabasis of E, and then take 4 (or ‘4) to be a matrix of f relative

to this basis. By definition,
f*A(vl’ cees vn) = A(f(vl)’ ECER) f(vn))’
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and by Theorem 4.11, this is equal to
D(A) A(vy, ..., v,).

By Corollary 4.12, we conclude that f*A = D(A)A since both of these forms take
on the same value on (v, ..., v,).

The above considerations have dealt with the determinant as a function on
all endomorphisms of a free module. One can also view it multiplicatively, as
a homomorphism.

det: GL,(R) — R*

from the group of invertible n x n matrices over R into the group of units of R.
The kernel of this homomorphism, consisting of those matrices with deter-
minant 1, is called the special linear group, and is denoted by SL,(R).

We now give an application of determinants to the situation of a free module
and a submodule considered in Chapter III, Theorem 7.8.

Proposition 4.20. Let R be a principal entire ring. Let F be a free module

over R and let M be a finitely generated submodule. Let {e,, .. ., e,, ... } be
a basis of F such that there exist non-zero elements a,, . . ., a,, € R such that:
(i) The elements ayey, . .., a,e,, form a basis of M over R.

(ii) We have a; | a;y  fori=1,...,m — 1.

Let L}, be the set of all s-multilinear alternating forms on F. Let J; be the ideal
generated by all elements f(y,, ..., y,), withfe L} andy,, ..., y,€ M. Then

Js: (al ”'as)'

Proof. We first show that J; < (a, - - - a;). Indeed, an element y € M can be
written in the form

y=ciaeq + -+ c.a,e,.

Hence if y,, . . ., y, € M, and fis multilinear alternating on F, then f(y,, ..., y;)
is equal to a sum in terms of type

Ciy o Gy, e ag f(egys eis)'

This is non-zero only when e, , ..., ¢; are distinct, in which case the product

a, - - - a, divides this term, and hence J, is contained in the stated ideal.
Conversely, we show that there exists an s-multilinear alternating form which

gives precisely this product. We deduce this from determinants. We can write

F as a direct sum

F=(e,....e)®F,
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with some submodule F,. Let f; (i = 1, ..., r) be the linear map F — R such
that fi(e;) = J,;, and such that f; has value Oon F,. For vy, ..., v, € F we define

[y, ..., v) = det(fi(v)).
Then f is multilinear alternating and takes on the value

fley, ..., e0) =1,
as well as the value
flaey, ..., a.e) = a; - a.
This proves the proposition.

The uniqueness of Chapter III, Theorem 7.8 is now obvious, since first (a;)
is unique, then (a;a,) is unique and the quotient (a,) is unique, and so forth by
induction.

Remark. Compare the above theorem with Theorem 2.9 of Chapter XIX,
in the theory of Fitting ideals, which gives a fancier context for the result.

§6. DUALITY

Let R be a commutative ring, and let E, F be modules over R. An R-
bilinear form on £ x Fis a map

f:Ex F->R

having the following properties: For each x € E, the map

y f(x, )

is R-linear, and for each y € F, the map

x> f(x, y)

is R-linear. We shall omit the prefix R- in the rest of this section, and write
{x,y>; or {x,y) instead of f(x,y). If xeF, we write x Ly if {x,y) = 0.
Similarly, if S is a subset of F, we define x L Sif x L yfor all ye S. We then say
that x is perpendicular to S. We let S* consist of all elements of E which are
perpendicular to S. It is obviously a submodule of E. We define perpendicu-
larity on the other side in the same way. We define the kernel of f on the left
to be F* and the kernel on the right to be E. We say that f is non-degenerate
on the left if its kernel on the left is 0. We say that f is non-degenerate on the
right if its kernel on the right is 0. If E, is the kernel of f on the left, then we
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get an induced bilinear map
E/Eq x F— R

which is non-degenerate on the left, as one verifies trivially from the definitions.
Similarly, if F is the kernel of f on the right, we get an induced bilinear map

E/E, x F/Fy—> R

which is non-degenerate on either side. This map arises from the fact that the
value {x, y> depends only on the coset of x modulo E, and the coset of y
modulo Fg.

We shall denote by L*(E, F; R) the set of all bilinear maps of E x F into R.
It is clear that this set is a module (i.e. an R-module), addition of maps being the
usual one, and also multiplication of maps by elements of R.

The form f gives rise to a homomorphism

¢, E - Homg(F, R)
such that
@x)y) = f(x,y) = <x, y),

forall xe Fand ye F. Weshall call Homg(F, R) the dual module of F, and denote
it by F¥. We have an isomorphism

L*(E, F;R) <> Homg(E, Homg(F, R))

given by f - ¢, its inverse being defined in the obvious way: If

¢ : E - Homg(F, R)

is a homomorphism, we let f be such that

&, 9) = o(x)(y).

We shall say that f is non-singular on the left if ¢, is an isomorphism, in
other words if our form can be used to identify E with the dual module of F.
We define non-singular on the right in a similar way, and say that f is non-
singular if it is non-singular on the left and on the right.

Warning: Non-degeneracy does not necessarily imply non-singularity.

We shall now obtain an isomorphism

Endg(E)+— L*(E, F; R)

depending on a fixed non-singular bilinear map f:E x F — R.
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Let A € Endg(E) be a linear map of E into itself. Then the map

(x, )= (Ax, y) = {AX, y);

is bilinear, and in this way, we associate linearly with each 4 € Endg(E) a bilinear
map in L*(E, F;R).

Conversely, let h : E x F — R be bilinear. Given x € E, themaph, : F - R
such that h (y) = h(x, y) is linear, and is in the dual space F¥. By assumption,
there exists a unique element x’ € E such that for all y € F we have

h(x, y) = <X, y).

It is clear that the association x +» x' is a linear map of E into itself. Thus with
each bilinear map E x F — R we have associated a linear map E — E.

It is immediate that the mappings described in the last two paragraphs are
inverse isomorphisms between Endg(E) and L*(E, F; R). We emphasize of
course that they depend on our form f.

Of course, we could also have worked on the right, and thus we have a
similar isomorphism

L?(E, F; R) < Endg(F)

depending also on our fixed non-singular form f.
As an application, let A : E — E be linear, and let (x, y) > (Ax, y) be its
associated bilinear map. There exists a unique linear map

'4:F > F
such that
(Ax, y) = <{x, 'Ay>

for all x € E and y € F. We call ’4 the transpose of A4 with respect to f.
It is immediately clear that if, A, B are linear maps of E into itself, then for
CER,

'(c4) = c'A, 4+ B)="'A +'B, and '(4B) ='B'A.

More generally, let E, F be modules with non-singular bilinear forms denoted
by (, )gand( , )p respectively. Let A: E— F be a linear map. Then by the
non-singularity of ( , )z there exists a unique linear map ‘A: F — E such that

(Ax, y)p = (x, 'Ay)p forall x e Eand y € F.
We also call ‘A the transpose with respect to these forms.

Examples. For a nice classical example of a transpose, see Exercise 33.
For the systematic study when a linear map is equal to its transpose, see the
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spectral theorems of Chapter XV. Next I give another example of a transpose
from analysis as follows. Let E be the (infinite dimensional) vector space of
C~ functions on R, having compact support, i.e. equal to 0 outside some finite
interval. We define the scalar product

f g = f f(x)g(x)dx.

Let D: E — E be the derivative. Then one has the formula
(Df, ¢ = —(f, Dg).

Thus one says that ‘D = —D, even though the scalar product is not “non-singular”,
but much of the formalism of non-singular forms goes over. Also in analysis,
one puts various norms on the spaces and one extends the bilinear form by
continuity to the completions, thus leaving the domain of algebra to enter the
domain of estimates (analysis). Then the spectral theorems become more com-
plicated in such analytic contexts.

Let us assume that E = F. Let f: E x E —» R be bilinear. By an aute-
morphism of the pair (E, f), or simply of f, we shall mean a linear automorphism
A : E - E such that

(Ax, Ayy = {x, )

for all x, y e E. The group of automorphisms of f is denoted by Aut(f).

Proposition 5.1. Let f:E x E — R be a non-singular bilinear form. Let
A:E — E be a linear map. Then A is an automorphism of f if and only if
'AA = id, and A is invertible.

Proof. From the equality
$x, y) = (Ax, Ay) = (x,'AAy)

holding for all x, y € E, we conclude that ‘44 = id if 4 is an automorphism of f.
The converse is equally clear.

Note. If E is free and finite dimensional, then the condition ‘44 = id
implies that A4 is invertible.

Let f:E x E— R be a bilinear form. We say that f is symmetric if
S(x,y) = f(y, x)for all x, y € E. The set of symmetric bilinear forms on E will
be denoted by LZ(E). Let us take a fixed symmetric non-singular bilinear form
f on E, denoted by (x, y) > <{x, v>. An endomorphism A4: E — E will be said
to be symmetric with respect to fif ‘4 = A4. It is clear that the set of sym-
metric endomorphisms of E is a module, which we shall denote by Sym(E).
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Depending on our fixed symmetric non-singular f, we have an isomorphism

L(E) <> Sym(E)

which we describe as follows. If g is symmetric bilinear on E, then there exists
a unique linear map A such that

g(x, y) = (Ax, y)

for all x, y € E. Using the fact that both f, g are symmetric, we obtain
(Ax, py = CAy, x) = (y,'Ax) = ('4x, y).

Hence A = 'A. The association g— A gives us a homomorphism from L(E)
into Sym(E). Conversely, given a symmetric endomorphism A4 of E, we can
define a symmetric form by the rule (x, y)+— (Ax, y>, and the association of
this form to A clearly gives a homomorphism of Sym(E) into LZ(E) which is
inverse to the preceding homomorphism. Hence Sym(E) and LZ(E) are iso-
morphic.

We recall that a bilinear form g: E x E — R is said to be alternating if
g(x, x) = 0 for all x € E, and consequently g(x, y) = —g(, x) for all x, y € E.
The set of bilinear alternating forms on E is a module, denoted by L2(E).

Let f be a fixed symmetric non-singular bilinear form on E. An endo-
morphism A:E — E will be said to be skew-symmetric or alternating with
respect to fif ‘A = — A, and also (4x,x) =0 for all xe E. If for all aeR,
2a = 0 implies a = 0, then this second condition {Ax, x) = 0 is redundant,
because (Ax, x) = — (Ax, x> implies {(Ax, x) = 0. It is clear that the set of
alternating endomorphisms of E is a module, denoted by Alt(E). Depending
on our fixed symmetric non-singular form f, we have an isomorphism

LX(E) < Alt(E)

described as usual. If g is an alternating bilinear form on E, its corresponding
linear map A is the one such that

g(x, y) = {Ax, y)

for all x, y € E. One verifies trivially in a manner similar to the one used in the
symmetric case that the correspondence g« 4 gives us our desired iso-
morphism.

Examples. Let & be a field and let E be a finite-dimensional vector space
over k. Let f: E X E — E be a bilinear map, denoted by (x, y) — xy. To each
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x € E, we associate the linear map A, : E — E such that

A(y) = xy.

Then the map obtained by taking the trace, namely

(x, y) = tr(4,,)

is a bilinear form on E. If xy = yx, then this bilinear form is symmetric.

Next, let E be the space of continuous functions on the interval [0, 1]. Let
K(s, t) be a continuous function of two real variables defined on the square
0<s=<1land0 <t £ 1 For g,y € E we define

(o by = f f P(SK s, DW(1) ds db,

the double integral being taken on the square. Then we obtain a bilinear form
on E. If K(s, t) = K(t, s), then the bilinear form is symmetric. When we discuss
matrices and bilinear forms in the next section, the reader will note the similarity
between the preceding formula and the bilinear form defined by a matrix.

Thirdly, let U be an open subset of a real Banach space E (or a finite-dimen-
sional Euclidean space, if the reader insists), and let f: U — R be a map which
is twice continuously differentiable. For each x e U, the derivative
Df(x):E - R is a continuous linear map, and the second derivative D*f(x)
can be viewed as a continuous symmetric bilinear map of E x E into R.

§6. MATRICES AND BILINEAR FORMS

We shall investigate the relation between the concepts introduced above and
matrices. Letf:E x F — R be bilinear. Assume that E, F are free over R. Let
® = {v,,...,v,} be a basis for E over R, and let 8 = {w,, ..., w,} be a basis
for F over R. Letg,;; = <v;, wj). If

X = X0y + -+ XUy
and
Yy =YW +"'+ynwn

are elements of E and F respectively, with coordinates x;, y; € R, then

(x,y) = Z Zgijxiyj'

i=1 j=1
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Let X, Y be the column vectors of coordinates for x, y respectively, with respect
to our bases. Then

(x,y> ='XGY

where G is the matrix (g;;). We could write G = M, 3.(f). We call G the matrix
associated with the form f relative to the bases B, ®'.

Conversely, given a matrix G (of size m x n), we get a bilinear form from
the map

(X, Y)—~'XGY.

In this way, we get a correspondence from bilinear forms to matrices and back,
and it is clear that this correspondence induces an isomorphism (of R-modules)

L*(E, F; R) - Mat,,, (R)

given by
S Mg(f).

The two maps between these two modules which we described above are clearly
inverse to each other.

If we have bases & = {v,,...,v,} and ® = {w,,...,w,} such that
{v;, w;> = 0y;, then we say that these bases are dual to each other. In that case,
if X is the coordinate vector of an element of E, and Y the coordinate vector of
an element of F, then the bilinear map on X, Y has the value

X'Y—:xlyl + ot X Yy

given by the usual dot product.

It is easy to derive in general how the matrix G changes when we change
bases in E and F. However, we shall write down the explicit formula only when
E=F and ® = @'. Thus we have a bilinear form f: E x E - R. Let C be
another basis of E and write Xg and X, for the column vectors belonging to
an element x of E, relative to the two bases. Let C be the invertible matrix
Mg(id), so that

Xg=CXe.
Then our form is given by
(x,y> = "'X'CGCYe.
We see that
(1) Mc(f) = 'CMG(f)C.

In other words, the matrix of the bilinear form changes by the transpose.
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If F is free over R, with a basis {n,, ..., n,}, then Homg(F, R) is also free,
and we have a dual basis {nj, . .., m,} such that
ni (M) = 8.

This has already been mentioned in Chapter 1II, Theorem 6.1.

Proposition 6.1. Let E, F be free modules of dimension n over R and let
f1E x F > R be a bilinear form. Then the following conditions are equiv-
alent:

[ is non-singular on the left.

[ is non-singular on the right.

[ is non-singular.

The determinant of the matrix of f relative to any bases is invertible in R.

Proof. Assume that f is non-singular on the left. Fix bases of E and F
relative to which we write elements of these modules as column vectors, and
giving rise to the matrix G for f. Then our form is given by

(X, Y)—'XGY
where X, Y are column vectors with coeflicients in R. By assumption the map
X+—'XG

gives an isomorphism between the module of column vectors, and the module
of row vectors of length n over R. Hence G is invertible, and hence its deter-
minant is a unit in R. The converse is equally clear, and if det(G) is a unit, we
see that the map

Y- GY

must also be an isomorphism between the module of column vectors and itself.
This proves our assertion.

We shall now investigate how the transpose behaves in terms of matrices.
Let E, F be free over R, of dimension n.

Letf: E x F — R be a non-singular bilinear form, and assume given a basis
® of E and ® of F. Let G be the matrix of f relative to these bases. Let
A:E — E be a linear map. If xe E, ye F, let X, Y be their column vectors
relative to @, ®’. Let M be the matrix of A4 relative to ®. Then for x € E and
y € F we have

{Ax,y) ='(MX)GY = 'X'MGY.

Let N be the matrix of ‘A relative to the basis B’. Then N'Y is the column vector
of 'Ay relative to B’. Hence

{x,'Ay> = 'XGNY.
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From this we conclude that ‘MG = GN, and since G is invertible, we can solve
for N in terms of M. We get:

Proposition 6.2. Let E, F be free over R, of dimensionn. Let f:E x F - R
be a non-singular bilinear form. Let B, &' be bases of E and F respectively
over R, and let G be the matrix of f relative to these bases. Let A:E — E be a
linear map, and let M be its matrix relative to ®. Then the matrix of ‘A
relative to ®' is

(G"HYYMG.

Corollary 6.3. If G is the unit matrix, then the matrix of the transpose is
equal to the transpose of the matrix.

In terms of matrices and bases, we obtain the following characterization
for a matrix to induce an automorphism of the form.

Corollary 6.4. Let the notation be as in Proposition 6.2, and let E = F,
® = ®'. Ann x n matrix M is the matrix of an automorphism of the form
f (relative to our basis) if and only if

'MGM = G.
If this condition is satisfied, then in particular, M is invertible.

Proof. We use the definitions, together with the formula given in
Proposition 6.2. We note that M is invertible, for instance because its deter-
minant is a unit in R.

A matrix M is said to be symmetric (resp. alternating) if ‘M = M (resp.
'M = — M and the diagonal elements of M are 0).

Let f:E x E— R be a bilinear form. We say that f is symmetric if
f(x,y) = f(y, x) for all x, y e E. We say that f is alternating if f(x, x) = O for
allxe E.

Proposition 6.5. Let E be a free module of dimension n over R, and let B
be a fixed basis. The map

o Mg(f)

induces an isomorphism between the module of symmetric bilinear forms on
E x E (resp. the module of alternating forms on E x E) and the module of
symmetric n x n matrices over R (resp. the module of alternating n x n
matrices over R).
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Proof. Consider first the symmetric case. Assume that f'is symmetric. In
terms of coordinates, let G = M3(f). Our form is given by 'XGY which must
be equal to 'YGX by symmetry. However, ‘XGY may be viewed as a 1 x 1
matrix, and is equal to its transpose, namely 'Y'GX. Thus

'YGX ='Y'GX

for all vectors X, Y. It follows that G = ‘G. Conversely, it is clear that any
symmetric matrix defines a symmetric form.

As for the alternating case, replacing x by x + y in the relation {x, x) =0
we obtain

X, 90+ <y, x) =0.
In terms of the coordinate vectors X, Y and the matrix G, this yields
‘XGY +'YGX = 0.

Taking the transpose of, say, the second of the 1 x 1 matrices entering in this
relation, yields (for all X, Y):

'XGY + 'X'GY = 0.
Hence G + 'G = 0. Furthermore, letting X be any one of the unit vectors
‘o,...,0,1,0,...,0)

and using the relation ‘XGX = 0, we see that the diagonal elements of G
must be equal to 0. Conversely, if G is an n x n matrix such that ‘G + G = 0,
and such that g; = 0 for i = 1,..., n then one verifies immediately that the
map

X, Y)~'XGY
defines an alternating form. This proves our proposition.

Of course, if as is usually the case, 2 is invertible in R, then our condition
‘M = — M implies that the diagonal elements of M must be 0. Thus in that
case, showing that G + ‘G = 0 implies that G is alternating.

§7. SESQUILINEAR DUALITY

There exist forms which are not quite bilinear, and for which the results
described above hold almost without change, but which must be handled
separately for the sake of clarity in the notation involved.
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Let R have an automorphism of period 2. We write this automorphism as
a a (and think of complex conjugation).
Following Bourbaki, we say that a map

f:Ex F->R

is a sesquilinear form if it is Z-bilinear, and if for xe E, ye F, and a € R we
have

flax, y) = af (x, y)

and
f(x, ay) = af (x. y).

(Sesquilinear means 13 times linear, so the terminology is rather good.)

Let E, E’ be modules. A map ¢: E — E’ is said to be anti-linear (or semi-
linear) if it is Z-linear, and @(ax) = ap(x) for all x € E. Thus we may say that
a sesquilinear form is linear in its first variable, and anti-linear in its second
variable. We let Homg(E, E') denote the module of anti-linear maps of E
into E'.

We shall now go systematically through the same remarks that we made
previously for bilinear forms.

We define perpendicularity as before, and also the kernel on the right and
on the left for any sesquilinear form f. These kernels are submodules, say E,
and F, and we get an induced sesquilinear form

E/E, x F/Fy — R,

which is non-degenerate on either side.

Let F be an R-module. We define its anti-module F to be the module whose
additive group is the same as F, and such that the operation R x F — F is
given by

(a, 1) ay.
Then F is a module. We have a natural isomorphism
Homg(F, R) < Hompg(F, R),

as R-modules.
The sesquilinear form f: E x F — R induces a linear map

@, E > Homg(F, R).

We say that fis non-singular on the left if ¢, is an isomorphism. Similarly, we
have a corresponding linear map

¢y F > Homg(E, R)
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from F into the dual space of E, and we say that f is non-singular on the right
if @; is an isomorphism. We say that f is non-singular if it is non-singular on
the left and on the right.

We observe that our sesquilinear form f can be viewed as a bilinear form

f:E x F—R,

and that our notions of non-singularity are then compatible with those defined
previously for bilinear forms.

If we have a fixed non-singular sesquilinear form on E x F, then depending
on this form, we obtain an isomorphism between the module of sesquilinear
forms on E x F and the module of endomorphisms of E. We also obtain an
anti-isomorphism between these modules and the module of endomorphisms
of F. In particular, we can define the analogue of the transpose, which in the
present case we shall call the adjoint. Thus, letf: E x F — R be a non-singular
sesquilinear form. Let A: E — E be a linear map. There exists a unique linear
map

A*:F > F
such that
CAx, y) = {x, A*y)

for all x e E and y € F. Note that A* is linear, not anti-linear. We call A* the
adjoint of A with respect to our form f. We have the rules

(cA* = ¢A*, (A + B)* = A* + B*,  (AB)* = B*A*

for all linear maps 4, B of E into itself, and c € R.
Let us assume that E = F. Let f:E x E— R be sesquilinear. By an
automorphism of f we shall mean a linear automorphism 4 : E — E such that

(Ax, Ay) = {x,y>

just as we did for bilinear forms.

Proposition 7.1. Let f:E x E > R be a non-singular sesquilinear form.
Let A:E — E be a linear map. Then A is an automorphism of f if and only
if A¥A = id, and A is invertible.

The proof, and also the proofs of subsequent propositions, which are
completely similar to those of the bilinear case, will be omitted.
A sesquilinear form g: E x E — R is said to be hermitian if

g(x,y) = g(y, x)

for all x, y € E. The set of hermitian forms on E will be denoted by L3(E). Let
R, be the subring of R consisting of all elements fixed under our automorphism
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a — a (i.e. consisting of all elements a € R such that a = a). Then LX(E) is an
Ry-module.

Let us take a fixed hermitian non-singular form f on E, denoted by
(x, y)—<{x, y>. An endomorphism A : E - E will be said to be hermitian
with respect to fif A* = A. It is clear that the set of hermitian endomorphisms
is an Ro-module, which we shall denote by Herm(E). Depending on our fixed
hermitian non-singular form f, we have an R -isomorphism

LX(E) < Herm(E)

described in the usual way. A hermitian form g corresponds to a hermitian
map A if and only if

g(x, y) = CAx, y)

for all x, y € E.

We can now describe the relation between our concepts and matrices, just
as we did with bilinear forms.

We start with a sesquilinear form f: E x F — R.

If E, F are free, and we have selected bases as before, then we can again
associate a matrix G with the form, and in terms of coordinate vectors X, Y
our sesquilinear form is given by

(X, Y)—'XGY,

where Y is obtained from Y by applying the automorphism to each component
of Y.

If E = F and we use the same basis on the right and on the left, then with
the same notation as that used in formula (1), if f is sesquilinear, the formula
now reads

(1S) ME(f) = 'CMg(f)C.

The automorphism appears.

Proposition 7.2. Let E, F be free modules of dimension n over R, and let
f:E x F— R be a sesquilinear form. Then the following conditions are
equivalent.

[ is non-singular on the left.
[ is non-singular on the right.
f is non-singular.

The determinant of the matrix of f relative to any bases is invertible in R.
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Proposition 7.3. Let E, F be free over R, of dimensionn. Letf:E x F - R
be a non-singular sesquilinear form. Let ®, ®' be bases of E and F respectively
over R, and let G be the matrix of f relative to these bases. Let A:E — E be
a linear map, and let M be its matrix relative to ®. Then the matrix of A*
relative to ®' is

(G~ YMG.
Corollary 7.4. If G is the unit matrix, then the matrix of A* is equal to 'M.

Corollary 7.5. Let the notation be as in the proposition, and let ® = ®’
be a basis of E. An n x n matrix M is the matrix of an automorphism of f
(relative to our basis) if and only if

'MGM = G.

A matrix M is said to be hermitian if ‘M = M.
Let R, be as before the subring of R consisting of all elements fixed under
our automorphism a — a (i.e. consisting of all elements a € R such that a = a).

Proposition 7.6. Let E be a free module of dimension n over R, and let ®
be a basis. The map

[ Mg(f)

induces an Rqy-isomorphism between the Ry-module of hermitian forms on E
and the Ry-module of n x n hermitian matrices in R.

Remark. If we had assumed at the beginning that our automorphism
a > a has period 2 or 1 (i.e. if we allow it to be the identity), then the results
on bilinear and symmetric forms become special cases of the results of this
section. However, the notational differences are sufficiently disturbing to warrant
a repetition of the results as we have done.

Terminology

For some confusing reason, the group of automorphisms of a symmetric
(resp. alternating, resp. hermitian) form on a vector space is called the orthogonal
(resp. symplectic, resp. unitary) group of the form. The word orthogonal is
especially unfortunate, because an orthogonal map preserves more than
orthogonality: It also preserves the scalar product, i.e. length. Furthermore,
the word symplectic is also unfortunate. It turns out that one can carry out a
discussion of hermitian forms over certain division rings (having automorphisms
of order 2), and their group of automorphisms have also been called symplectic,
thereby creating genuine confusion with the use of the word relative to alter-
nating forms.
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In order to unify and improve the terminology, I have discussed the matter
with several persons, and it seems that one could adopt the following con-
ventions.

As said in the text, the group of automorphisms of any form f'is denoted by
Aut(f).

On the other hand, there is a standard form, described over the real numbers
in terms of coordinates by

fOox)=x7 4+ x5,
over the complex numbers by
f(x’ X) = xl;)_cl +- 4+ xnk_n’

and over the quaternions by the same formula as in the complex case. The
group of automorphisms of this form would be called the unitary group, and
be denoted by U,. The points of this group in the reals (resp. complex, resp.
quaternions) would be denoted by

UuR), U/ C),  UxK),

and these three groups would be called the real unitary group (resp. complex

unitary group, resp. quaternion unitary group). Similarly, the group of points

of U, in any subfield or subring k of the quaternions would be denoted by U (k).
Finally, if f is the standard alternating form, whose matrix is

0 1,
(1 )
one would denote its group of automorphisms by 4,,, and call it the alternating
form group, or simply the alternating group, if there is no danger of confusion
with the permutation group. The group of points of the alternating form
group in a field k would then be denoted by 4,,(k).
As usual, the subgroup of Aut(f) consisting of those elements whose

determinant is 1 would be denoted by adding the letter S in front, and would
still be called the special group. In the four standard cases, this yields

SU(R), SU(O), SU(K), SA,, (k).

§8. THE SIMPLICITY OF SL,(F)/ +1

Let F be a field. Let n be a positive integer. By GL,(F) we mean the group
of n x n invertible matrices over F. By SL,(F) we mean the subgroup of those
matrices whose determinant is equal to 1. By PGL,(F) we mean the factor
group of GL,(F) by the subgroup of scalar matrices (which are in the center).
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Similarly for PSL,(F). In this section, we are interested in giving an application
of matrices to the group theoretic structure of SL,. The analogous statements
for SL, with n = 3 will be proved in the next section.

The standard Borel subgroup B of GL, is the group of all matrices

a b

0 d
with a, b, d € F and ad # 0. For the Borel subgroup of SL,, we require in
addition that ad = 1. By a Borel subgroup we mean a subgroup which is

conjugate to the standard Borel subgroup (whether in GL, or SL,). We let
U be the group of matrices

1 b . .
u(by = (O 1), with b e F.
We let A be the group of diagonal matrices

a 0
1 3
(O d)’ with a, d € F*.

Let

a 0
= 1 ‘*
s(a) <0 - 1) withae F

=)

For the rest of this section, we let

and

G = GLy(F) or SL,(F).

Lemma 8.1. The matrices

1 1
X(b)z(0 ll)) and Y(c)-——(c (1))

generate SL,(F).

Proof. Multiplying an arbitrary element of SL,(F) by matrices of the
above type on the right and on the left corresponds to elementary row and
column operations, that is adding a scalar multiple of a row to the other, etc.
Thus a given matrix can always be brought into a form

o )
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by such multiplications. We want to express this matrix with @ # 1 in the form

o 6 o D)

Matrix multiplication will show that we can solve this equation, by selecting x
arbitrarily # 0, then solving for b, ¢, and d successively so that

it S

1+ bx 1+ bc

1+bx=a, c=

Then one finds 1 + bc = (1 + xb)”! and the two symmetric conditions

b+bcd+d=0
c+bex+x=0,

so we get what we want, and thereby prove the lemma.

Let U be the group of lower matrices

Then we see that

Also note the commutation relation

w(? Ow'1
0 d B

so w normalizes A. Similarly,

I
——
o =
2 o
\.._/

wBw™ ! =B

is the group of lower triangular matrices.
We note that

B =AU = UA,

and also that A normalizes U.
There is a decomposition of G into disjoint subsets

G = B u BwB.

Indeed, view G as operating on the left of column vectors. The isotropy group of

-

is obviously U. The orbit Be! consists of all column vectors whose second
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component is 0. On the other hand,

0
1 _
v <—1)’

and therefore the orbit Bwe'! consists of all vectors whose second component
is # 0, and whose first component is arbitrary. Since these two orbits of B and
BwB cover the orbit Ge’, it follows that the union of B and BwB is equal to G
(because the isotropy group U is contained in B), and they are obviously
disjoint. This decomposition is called the Bruhat decomposition.

Proposition 8.2. The Borel subgroup B is a maximal proper subgroup.

Proof. By the Bruhat decomposition, any element not in B lies in BwB,
so the assertion follows since B, BwB cover G.

Theorem 8.3. If F has at least four elements, then SL,(F) is equal to its own

commutator group.

Proof. We have the commutator relation (by matrix multiplication)
s(a)u(b)s(a)” 'u(b)~* = u(ba® — b) = u(b(a® — 1)).

Let G = SL,(F) for this proof. We let G’ be the commutator subgroup, and
similarly let B’ be the commutator subgroup of B. We prove the first assertion
that G = G'. From the hypothesis that F has at least four elements, we can
find an element a # 0 in F such that a? # 1, whence the commutator relation
shows that B' = U. It follows that G’ > U, and since G’ is normal, we get

G > wUw™ L,
From Lemma 8.1, we conclude that G’ = G.
Let Z denote the center of G. It consists of +1, that is + the identity 2 x 2
matrix if G = SL,(F); and Z is the subgroup of scalar matrices if G = GL,(F).

Theorem 8.4. If F has at least four elements, then SL,(F)/Z is simple.

The proof will result from two lemmas.

Lemma 8.5. The intersection of all conjugates of B in G is equal to Z.

Proof. We leave this to the reader, as a simple fact using conjugation
with w.

Lemma 8.6. Let G = SL,(F). If H is normal in G, then either H = Z or
HoG.

Proof. By the maximality of B we must have

HB=B or HB=G.
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If HB = Bthen H < B. Since H is normal, we conclude that H is contained in
every conjugate of B, whence in the center by Lemma 8.5. On the other hand,
suppose that HB = G. Write

w = hb
with he H and b € B. Then
wUw ' =U =hbUb 'h™' = hUh™ ! <« HU

because H is normal. Since U = HU and U, U generate SL,(F), it follows that
HU = G. Hence

G/H = HU/H ~ U/(U n H)

is abelian, whence H o G’, as was to be shown.

The simplicity of Theorem 8.4 is an immediate consequence of Lemma 8.6.

§9. THE GROUP SL,(F).n > 3.

In this section we look at the case with n = 3, and follow parts of Artin’s
Geometric Algebra, Chapter IV. (Artin even treats the case of a non-commuta-
tive division algebra as the group ring, but we omit this for simplicity.)

Fori,j=1,...,nandi # jand ce F, we let

1

Ei{c)=10

be the matrix which differs from the unit matrix by having ¢ in the ij-component
instead of 0. We call such E;(c) an elementary matrix. Note that

det E,(c) = 1.

If A is any n x nmatrix, then multiplication E;;(c)4 on the left adds c times the
j-th row to the i-th row of A. Multiplication AE;(c) on the right adds ¢ times
the i-th column to the j-th column. We shall mostly multiply on the left.

For fixed i # j the map

c— Eifc)
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is a homomorphism of F into the multiplicative group of n x n matrices
GL,(F).

Proposition 9.1.  The group SL,(F) is generated by the elementary matrices.
If A € GL,(F), then A can be written in the form

A = SD,

where S € SL(F) and D is a diagonal matrix of the form

1 0 --- 0
0 1 0
D:
0 0 d

so D has 1 on the diagonal except on the lower right corner, where the com-
ponent is d = det(A).

Proof. Let A€ GL(F). Since A is non-singular, the first component of
some row is not zero, and by an elementary row operation, we can make
ay; # 0. Adding a suitable multiple of the first row to the second row, we make
a,, # 0, and then adding a suitable multiple of the second row to the first we
make a,; = 1. Then we subtract multiples of the first row from the others to
make a;; = 0 fori # 1.

We now repeat the procedure with the second row and column, to make
dy, =1 and a;; = 0 if i > 2. But then we can also make a,, = 0 by sub-
tracting a suitable multiple of the second row from the first, so we can get
a;, = 0fori# 2.

We repeat this procedure until we are stopped at a,, = d # 0, and a,; = 0
for j # n. Subtracting a suitable multiple of the last row from the preceding
ones yields a matrix D of the form indicated in the statement of the theorem,
and concludes the proof.

Theorem 9.2. For n = 3, SL,(F) is equal to its own commutator group.

Proof. 1t suffices to prove that E;(c) is a commutator. Using n = 3, let
k # i, j. Then by direct computation,

Eij(c) = Eik(C)Ekj(l)Eik(_c)Ekj( -1)
expresses E;(c) as a commutator. This proves the theorem.

We note that if a matrix M commutes with every element of SL,(F), then
it must be a scalar matrix. Indeed, just the commutation with the elementary
matrices

E)=1+1,;
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shows that M commutes with all matrices 1;; (having 1 in the ij-component,
0 otherwise), so M commutes with all matrices, and is a scalar matrix. Taking
the determinant shows that the center consists of w,(F)I, where w,(F) is the
group of n-th roots of unity in F.

We let Z be the center of SL,(F), so we have just seen that Z is the group
of scalar matrices such that the scalar is an n-th root of unity. Then we define

PSL(F) = SL(F)/Z.
Theorem 9.3. For n = 3, PSL,(F) is simple.

The rest of this section is devoted to the proof. We view GL,(F) as operating
on the vector space E = F". If 1 is a non-zero functional on E, we let

H, = Ker 4,

and call H, (or simply H) the hyperplane associated with .. ThendimH =n — 1,
and conversely, if H is a subspace of codimension 1, then E/H has dimension
1. and is the kernel of a functional.

An element T e GL,(F) is called a transvection if it keeps every element of
some hyperplane H fixed, and for all x € E, we have

Tx=x+h for some h € H.
Given any element u € H, we define a transvection T, by
T,x = x + A(x)u.
Every transvection is of this type. If u, v € H;, it is immediate that

T,

u

+v=7—;°7:;'

If T is a transvection and A € GL,(F), then the conjugate ATA™! is ob-
viously a transvection.

The elementary matrices E;(c) are transvections, and it will be useful to
use them with this geometric interpretations, rather than formally as we did
before. Indeed, let ey, ..., ¢, be the standard unit vectors which form a basis
of F™. Then E{(c) leaves ¢, fixed if k # j, and the remaining vector e; is moved
by a multiple of ¢;. We let H be the hyperplane generated by e, with k # j,
and thus see that E;(c) is a transvection.

Lemma 9.4. For n 2 3, the transvections # I form a single conjugacy class
in SL,(F).

Proof. First, by picking a basis of a hyperplane H = H,; and using one
more element to form a basis of F™, one sees from the matrix of a transvection
T that det T = 1, i.e. transvections are in SL,(F).
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Let T’ be another transvection relative to a hyperplane H'. Say
Tx=x+ AMxu and T'x=x+ A(xW

withu e Hand u' € H'. Let z and z’ be vectors such that A(z) = 1 and A'(z") = L.
Since a basis for H together with z is a basis for F™, and similarly a basis for
H’ together with z' is a basis for F™, there exists an element A € GL,(F) such
that

Au =o', AH = H', Az =z,
It is then immediately verified that
ATA ' =T,

so T, T’ are conjugate in GL,(F). But in fact, using n = 3, the hyperplanes H,
H’ contain vectors which are independent. We can change the image of a basis
vector in H' which is independent of u’ by some factor in F so as to make
det A = 1,s0 A € SL,(F). This proves the lemma.

We now want to show that certain subgroups of GL,(F) are either con-
tained in the center, or contain SL,(F). Let G be a subgroup of GL,(F). We
say that G is SL,-invariant if

AGA™' = G forall A € SL(F).

Lemma 9.5. Letn = 3. Let G be SL-invariant, and suppose that G contains
a transvection T # I. Then SL(F) < G.

Proof. By Lemma 9.4, all transvections are conjugate, and the set of
transvections contains the elementary matrices which generate SL,(F) by
Proposition 9.1, so the lemma follows.

Theorem 9.6. Let n = 3. If G is a subgroup of GL,(F) which is SL,-invariant
and which is not contained in the center of GL,(F), then SL(F) < G.

Proof. By the preceding lemma, it suffices to prove that G contains a
transvection, and this is the key step in the proof of Theorem 9.3.

We start with an element 4 € G which moves some line. This is possible
since G is not contained in the center. So there exists a vector u # 0 such that
Au is not a scalar multiple of u, say Au = v. Then u, v are contained in some
hyperplane H = Ker A. Let T = T, and let

B=ATA 'T™ !,
Then

ATA™'# T and B=ATA 'T ' #1
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This is easily seen by applying say B to an arbitrary vector x, and using the
definition of T,. In each case, for some x the left-hand side cannot equal the
right-hand side.

For any vector x € F™ we have

Bx — x € (u, v),
where (u, v) is the plane generated by u, v. It follows that BH < H, so
BH=H and Bx — xe€H.

We now distinguish two cases to conclude the proof. First assume that B
commutes with all transvections with respect to H. Let w e H. Then from the
definitions, we find for any vector x:

BT,x = Bx + A(x)Bw
T,,Bx = Bx + A(Bx)w = Bx + A(x)w.

Since we are in the case BT, = T, B, it follows that Bw = w. Theretfore B
leaves every vector of H fixed. Since we have seen that Bx — x € H for all x,
it follows that B is a transvection and is in G, thus proving the theorem in this
case.

Second, suppose there is a transvection T,, with w € H such that B does not
commute with T,,. Let

C =BT,B~'T,".

Then C # I and C € G. Furthermore C is a product of T,! and BT,B™'
whose hyperplanes are H and BH, which is also H by what we have already
proved. Therefore C is a transvection, since it is a product of transvections
with the same hyperplane. And C € G. This concludes the proof in the second
case, and also concludes the proof of Theorem 9.6.

We now return to the main theorem, that PSL,(F) is simple. Let G be a
normal subgroup of PSL,(F), and let G be its inverse image in SL,(F). Then G
is SL,-invariant, and if G # 1, then G is not equal to the center of SL,(F).
Therefore G contains SL,(F) by Theorem 9.6, and therefore G = PSL(F), thus
proving that PSL,(F) is simple.

Example. By Exercise 41 of Chapter I, or whatever other means, one sees
that PSL,(Fs) = As (where Fj is the finite field with 5 elements). While you are
in the mood, show also that

PGL2(F3) = S4 but SL2(F3) % S4, PSLz(F3) = A4.
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EXERCISES

1. Interpret the rank of a matrix A in terms of the dimensions of the image and kernel
of the linear map L.

2. (a) Let A be an invertible matrix in a commutative ring R. Show that (A)~! = (A1),

(b) Let f be a non-singular bilinear form on the module E over R. Let A be an

R-automorphism of E. Show that (*A)~! = {(A~"). Prove the same thing in the
hermitian case, i.e. (A*)~1 = (A7 1)*.

3. Let V, W be finite dimensional vector spaces over a field k. Suppose given
non-degenerate bilinear forms on V and W respectively, denoted both by ( , ).
Let L: V — W be a surjective linear map and let ‘L be its transpose; that is,
(Lv, w) = (v, 'Lw)yforv € Vand w € W.

(a) Show that ‘L is injective.
(b) Assume in addition that if v € V, v # 0 then (v, v) # 0. Show that

V=KerL®Im'L,
and that the two summands are orthogonal. (Cf. Exercise 33 for an example.)

4. Let A,. ..., A, be row vectors of dimension n, over a field k. Let X = (x,,..., x,). Let
by, ..., b, ek By asystem of linear equations in k one means a system of type

A, X=b,,...,A,-X=b,

If by = .- = b, = 0, one says the system is homogeneous. We call n the number of
variables, and r the number of equations. A solution X of the homogeneous system
is called trivial if x, = 0,i=1,..., n.
(a) Show that a homogeneous system of r linear equations in n unknowns with
n > r always has a non-trivial solution.
(b) Let L be a system of homogeneous linear equations over a field k. Let k be a
subfield of k. If L has a non-trivial solution in k', show that it has a non-trivial
solution in k.

5. Let M beann x nmatrix over a field k. Assume that tr(MX) = Oforalln x nmatrices
X in k. Show that M = O.

6. Let S be a set of n x n matrices over a field k. Show that there exists a column vector
X # 0 of dimension n in k, such that MX = X for all M €S if and only if there exists
such a vector in some extension field k" of k.

7. Let H be the division ring over the reals generated by elements i, j, k such that
i?=j*=k*= —1,and

ij=—ji=k jk=—ki=i  ki= —ik=]
Then H has an automorphism of order 2, given by
ag + ayi + a,j + azk—>ay — ai — a,j — ask.

Denote this automorphism by a+ & What is a&? Show that the theory of hermitian
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10.
11.

12.

13.

15.

forms can be carried out over H, which is called the division ring of quaternions (or by
abuse of language, the non-commutative field of quaternions).

. Let N be a strictly upper triangular n x n matrix, thatis N = (g;)and a;; = 0if i = j.

Show that N" = 0.

. Let E be a vector space over k, of dimension n. Let T: E — E be a linear map such

that T is nilpotent, that is T™ = 0 for some positive integer m. Show that there exists
a basis of E over k such that the matrix of T with respect to this basis is strictly
upper triangular.

If N is a nilpotent n x n matrix, show that I + N is invertible.

Let R be the set of all upper triangular n x n matrices (a;;) with a;; in some field k, so
a; = 0if i > j. Let J be the set of all strictly upper triangular matrices. Show that J
is a two-sided ideal in R. How would you describe the factor ring R/J?

Let G be the group of upper triangular matrices with non-zero diagonal elements.
Let H be the subgroup consisting of those matrices whose diagonal element is 1.
(Actually prove that H is a subgroup). How would you describe the factor group G/H?

Let R be the ring of n X n matrices over a field k. Let L be the subset of matrices
which are 0 except on the first column.
(a) Show that L is a left ideal.
(b) Show that L is a minimal left ideal; that is, if L' C L is a left ideal and
L' # 0, then L' = L. (For more on this situation, see Chapter VII, §5.)

. Let F be any field. Let D be the subgroup of diagonal matrices in GL,(F). Let N be

the normalizer of D in GL,(F). Show that N/D is isomorphic to the symmetric group
on n elements.

Let F be a finite field with ¢ elements. Show that the order of GL(F) is

@ - - @ —¢ N=g""" ]~ D

i=1
[Hint: Letx,,..., x,bea basis of F". Any element of GL,(F) is uniquely determined
by its effect on this basis, and thus the order of GL,(F) is equal to the number of all
possible bases. If A € GL,(F), let Ax; = y;. For y, we can select any of the ¢" — 1
non-zero vectors in F". Suppose inductively that we have already chosen y,, ..., y,
with r < n. These vectors span a subspace of dimension r which contains g" elements.
For y;,, we can select any of the ¢" — ¢" elements outside of this subspace. The
formula drops out.]

. Again let F be a finite field with ¢ elements. Show that the order of SL,(F) is

g " [l (@ = 1:
i=2

and that the order of PSL,(F) is

1 et
yEAR | (U
i=2

where d is the greatest common divisor of nand g — 1.
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17.

18.

19.

20.

21.

22.

Let F be a finite field with g elements. Show that the group of all upper triangular
matrices with 1 on the diagonal is a Sylow subgroup of GL,(F) and of SL,(F).

The reduction map Z — Z/NZ, where N is a positive integer defines a homomorphism
SL,(Z) - SL(Z/NZ).

Show that this homomorphism is surjective. [Hint: Use elementary divisors, t.e. the
structure of submodules of rank 2 over the principal ring Z.]

Show that the order of SL,(Z/NZ) is equal to

1
)
H« r
where the product is taken over all primes dividing N.

Show that one has an exact sequence

det

1 - SL,(Z/NZ) » GL,(Z/NZ) S (Z/NZ)* > 1.

In fact, show that
GL,(Z/NZ) = SL,(Z/NZ)Gy,

where Gy, is the group of matrices

((1) 2) with de(Z/NZ)*.

Show that SL,(Z) is generated by the matrices

(1 1) <0 —1)
and .
0 1 1 0
Let p be a prime = 5. Let G be a subgroup of SL,(Z/p"Z) with n = 1. Assume that

the image of G in SL,(Z/pZ) under the natural homomorphism is all of SL,(Z/pZ).
Prove that G = SL,(Z/p"Z).

Note. Exercise 22 is a generalization by Serre of a result of Shimura; see Serre’s Abelian
{-adic Representations and elliptic curves, Benjamin, 1968, IV, §3, Lemma 3. See also
my exposition in Elliptic Functions, Springer Verlag, reprinted from Addison-Wesley,
1973, Chapter 17, §4.

23.

24.

25.

Let & be a field in which every quadratic polynomial has a root. Let B be the Borel
subgroup of GL,(k). Show that G is the union of all the conjugates of B. (This cannot
happen for finite groups!)

Let A, B be square matrices of the same size over a field k. Assume that B is non-
singular. If t is a variable, show that det(A4 + ¢B) is a polynomial in ¢, whose leading
coefficient is det(B), and whose constant term is det(A).

Leta,y,...,ay, be elements from a principal ideal ring, and assume that they generate
the unit ideal. Suppose #n > 1. Show that there exists a matrix (a;) with this given
first row, and whose determinant is equal to 1.
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26. Let A be a commutative ring, and I = (x,,..., x,) an ideal. Let ¢;; € 4 and let

r
Vi= Y ¢ijx;.
i=1

LetI' = (y,,...,y). Let D = det(c;;). Show that DI < I'.

27. Let L be a free module over Z with basis e, ..., e,. Let M be a free submodule of the
same rank, with basis u,,...,u,. Let u; =) c;e;. Show that the index (L:M) is
given by the determinant:

(L : M) = [det(c;))I.

28. (The Dedekind determinant). Let G be a finite commutative group and let F be the
vector space of functions of G into C. Show that the characters of G (homomorphisms
of G into the roots of unity) form a basis for this space. If f: G — C is a function,
show that fora, b € G.

det(f(ab™ ") =[] X x(a)f(a),

x ae€G

where the product is taken over all characters. [Hint: Use both the characters and
the characteristic functions of elements of G as bases for F, and consider the linear map

T=3 f@T,

where T, is translation by a.] Also show that

det(f(ab™")) = ( ) f(a)) det(f(ab™") — f(b™1)),

acG

where the determinant on the left is taken for all a, » € G, and the determinant on
the right is taken only for a, b + 1.

29. Let g be a module over the commutative ring R. A bilinear map g x g — g, written
(x,y) > [x,y], is said to make g a Lie algebra if it is anti-symmetric, i.e.
[x, y] = —[y, x], and if the map Dy: g — g defined by D,(y) = [x, y] is a derivation
of g into itself, that is

D([y,2]) = [Dy,2} +[y,Dz]  and  D(cy) = cD(y)

forall x, y,zegand ce R

(a) Let A be an associative algebra over R. For x,ye A4, define [x,y] =
xy — yx. Show that this makes A4 into a Lie algebra. Example: the algebra
of R-endomorphisms of a module M, especially the algebra of matrices
Mat,(R).

(b) Let M be a module over R. For two derivations D;, D, of M, define
[D1,Ds] = DiDy — D,D,. Show that the set of derivations of M is a Lie
subalgebra of Endg(M).

(c) Show that the map x — E, is a Lie homomorphism of g into the Lie algebra
of derivations of g into itself.

30. Given a set of polynomials {P (X;;)} in the polynomial ring R[X;;] (1 <i,j<n), a
zero of this set in R is a matrix x = (x;;) such that x;;€ R and P,(x;;) = 0 for all v.
We use vector notation, and write (X) = (X;;). We let G(R) denote the set of zeros
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of our set of polynomials {P,}. Thus G(R) = M,(R), and if R’ is any commutative
associative R-algebra we have G(R') = M,(R’). We say that the set {P,} defines an
algebraic group over R if G(R') is a subgroup of the group GL,(R') for all R’ (where
GL,(R’) is the multiplicative group of invertible matrices in R’).

As an example, the group of matrices satisfying the equation ‘XX = I, is an alge-
braic group.

Let R’ be the R-algebra which is free, with a basis {1, t} such that t*> = 0. Thus
R’ = R[1]. Let g be the set of matrices x € M,(R) such that I, + tx € G(R[t]). Show
that g is a Lie algebra. [Hint: Note that

P(I, + tX) = P(1,) + grad P,(I)tX.

Use the algebra R[t, u] where t* = u?> = 0 to show that if I, + tx € G(R[t]) and
I, + uy € G(R[u]) then [x, y] € g.]

(I have taken the above from the first four pages of [Se 65]. For more information
on Lie algebras and Lie Groups, see [Bo 82] and [Ja 79].

[Bo 82] N. BOURBAKI, Lie Algebras and Lie Groups, Masson, 1982

[Ja79] N. JAcoBsoN, Lie Algebras, Dover, 1979 (reprinted from Interscience,
1962)

[Se 65] J. P. SERRE, Lie Algebras and Lie Groups, Benjamin, 1965. Reprinted
Springer Lecture Notes 1500. Springer/ Verlag 1992

Non-commutative cocycles

31

Let K be a finite Galois extension of a field k. Let I' = GL,(K), and G = Gal(K/k).
Then G operates on I'. By a cocycle of G in I' we mean a family of elements {A(c)}
satisfying the relation

A(6)o A(r) = A(o7).
We say that the cocycle splits if there exists B € I such that
A(c) =B '¢B foralleeG.

In this non-commutative case, cocycles do not form a group, but one could define an
equivalence relation to define cohomology classes. For our purposes here, we care
only whether a cocycle splits or not. When every cocycle splits, we also say that
HYG,T) =0 (or 1).

Prove that H{(G, GL(K)) = 1. [Hint: Let {e,,..., ey} be a basis of Mat,(k) over k,
say the matrices with 1 in some component and 0 elsewhere. Let

with variables x;. There exists a polynomial P(X) such that x is invertible if and only
if P(xy,...,xy) # 0. Instead of P(x,,..., xy) we also write P(x). Let {A(s)} be a
cocycle. Let {t,} be algebraically independent variables over k. Then

P( Y tyA(y)> #0

yeG
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because the polynomial does not vanish when one ¢, is replaced by 1 and the others
are replaced by 0. By the algebraic independence of automorphisms from Galois
theory, there exists an element y € K such that if we put

B =Y (yn)A®y)

then P(B) # 0, so B is invertible. It is then immediately verified that A(c) = BB~ .
But when £ is finite, cf. my Algebraic Groups over Finite Fields, Am. ]J. Vol 78 No.
3, 1956.]

32. Invariant bases. (A. Speiser, Zahlentheoretische Sitze aus der Gruppentheorie,
Math. Z. 5 (1919) pp. 1-6. See also Kolchin-Lang, Proc. AMS Vol. 11 No. 1,
1960). Let K be a finite Galois extension of k, G = Gal(K/k) as in the preceding
exercise. Let V be a finite-dimensional vector space over K, and suppose G operates
on V in such a way that g(av) = o(a)o(v) for ae K and ve V. Prove that there

exists a basis {w1,...,wy} such that ow; =w; foralli=1,...,n and all 6 € G (an
invariant basis). Hint: Let {v1,...,v,} be any basis, and let
Uy Uy
ol : |=A(o)
U" U"

where A(o) is a matrix in GL,(K). Solve for B in the equation (¢B)A(c) = B, and let

Wy v,

The next exercises on harmonic polynomials have their source in Whittaker, Math.
Ann. 1902; see also Whittaker and Watson, Modern Analysis, Chapter XIII.

33. Harmonic polynomials. Let Pol(n, d) denote the vector space of homogeneous poly-

nomials of degree d in n variables X,,..., X, over a field k of characteristic 0.
For an n-tuple of integers (v, ..., v,) with »; = 0 we denote by M, as usual the
monomial
M, (X) = X{" - Xz,
Prove:
n—1+d

(a) The number of monomials of degree d is ( ), so this number is

n—
the dimension of Pol(n, d).

(b) Let (D) = (Dy, ..., D,) where D; is the partial derivative with respect to the
i-th variable. Then we can define P(D) as usual. For P, Q € Pol(n, d), define

(P, Q) = P(D)Q(0).

Prove that this defines a symmetric non-degenerate scalar product on
Pol(n, d). If k is not real, it may happen that P # 0 but (P, P) = 0. However,
if the ground field is real, then (P, P) > O for P # 0. Show also that the
monomials of degree d form an orthogonal basis. What is (M,,,, M(,)}?

(c) The map P > P(D) is an isomorphism of Pol(n, d) onto its dual.
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(d) Let A = D} + - -+ + D2. Note that A: Pol(n, d) — Pol(n, d — 2) is a linear
map. Prove that A is surjective.

(e) Define Har(n, d) = KerA = vector space of harmonic homogeneous poly-
nomials of degree d. Prove that

dim Har(n,d) = (n + d = 3)!(n + 2d — 2)/(n — 2)'d!.

In particular, if n = 3, then dim Har(3, d) = 2d + 1.
(f) Letr? = X} + --- + X2 Let S denote multiplication by 2. Show that

(AP, Q) = (P, SQ) for P € Pol(n, d) and Q € Pol(n, d — 2),

so ‘A = §. More generally, for R € Pol(n, m) and Q € Pol(n, d — m) we
have

(R(DYP, Q) = (P, RQ).

(g) Show that [A, S§] = 4d + 2n on Pol(n, d). Here [A, S] = Ao § — So A.
Actually, [A, §] = 4E + 2n, where E is the Euler operator E = EX,D,-,
which is, however, the degree operator on homogeneous polynomials.

(h) Prove that Pol(n, d) = Har(n, d) ® r?Pol(n, d — 2) and that the two summands
are orthogonal. This is a classical theorem used in the theory of the Laplace
operator.

() Let (cy,..., c,) € k" be such that X,c2= 0. Let
HYX) = (e,X; + - + ¢,X,)%

Show that H? is harmonic, i.e. lies in Har(n, d).
(j) For any Q € Pol(n, d), and a positive integer m, show that

QD)H(X) = m(m = 1) -+ (m — d + 1)Q(c)H™(X).
34. (Continuation of Exercise 33). Prove:

Theorem. Let k be algebraically closed of characteristic 0. Let n = 3. Then

Har(n, d) as a vector space over k is generated by all polynomials H? with (c) € k"
such that >, c? =

[Hint: Let Q € Har(n, d) be orthogonal to all polynomials H? with (c) € k”. By
Exercise 33(h), it suffices to prove that r2|Q. But if >, ¢? = 0, then by Exercise
33(j) we conclude that Q(c) = 0. By the Hilbert Nullstellensatz, it follows that there
exists a polynomial F(X) such that

Q(X)* = rY(X)F(X) for some positive integer s.
But n = 3 implies that r?(X) is irreducible, so r2(X) divides Q(X).]

35. (Continuation of Exercise 34). Prove that the representation of O(n) = U,(R) on
Har(n, d) is irreducible.
Readers will find a proof in the following:

S. HELGASON, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhauser, 1981
(see especially §3, Theorem 3.1(ii))

N. VILENKIN, Special Functions and the Theory of Group Representations, AMS Trans-

lations of mathematical monographs Vol. 22, 1968 (Russian original, 1965), Chapter
IX, §2.
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R. Howe and E. C. TaN, Non-Abelian Harmonic Analysis, Universitext, Springer Verlag,
New York, 1992.

The Howe-Tan proof runs as follows. We now use the hermitian product

.0 = f P(x) O dox),

sn-t

where o is the rotation invariant measure on the (n—1)-sphere S”~!. Let
ey,-..,e, be the unit vectors in R". We can identify O(n — 1) as the subgroup of
O(n) leaving e, fixed. Observe that O(n) operates on Har(n, d), say on the right by
composition P +— Po A, A € O(n), and this operation commutes with A. Let

A: Har(n,d) — C

be the functional such that A(P) = P(e,). Then 4 is O(n — 1)-invariant, and since the
hermitian product is non-degenerate, there exists a harmonic polynomial @, such
that

A(P) =<{(P,Q,> forall PeHar(n,d).

Let M < Har(n,d) be an O(n)-submodule. Then the restriction A3 of A to M is
nontrivial because O(n) acts transitively on S"~'. Let QM be the orthogonal pro-
jection of Q, on M. Then QM is O(n — 1)-invariant, and so is a linear combination

oMix) = -+§ i xh 2k,
e

Furthermore Q¥ is harmonic. From this you can show that Q¥ is uniquely determined,
by showing the existence of recursive relations among the coefficients c;. Thus the
submodule M is uniquely determined, and must be all of Har(n, d).

Irreducibility of sl,(F).

36. Let F be a field of characteristic 0. Let g = sl,(F) be the vector space of matrices
with trace 0, with its Lie algebra structure [X, Y] = XY — YX. Let Ej; be the matrix
having (i, j)-component | and all other components 0. Let G = SL,(F). Let 4 be
the multiplicative group of diagonal matrices over F.

(@) Let H;=E; — E;j;y;41 for i=1,...,n—1. Show that the elements Ej
(i #)), Hy,...,H,) form a basis of g over F.

(b) For g e G let ¢(g) be the conjugation action on g, that is ¢(g)X = gXg~.
Show that each Ej; is an eigenvector for this action restricted to the group 4.

(c) Show that the conjugation representation of G on g is irreducible, that is, if
V # 0 is a subspace of g which is ¢(G)-stable, then V = g. Hint: Look up
the sketch of the proof in [JoL 01], Chapter VII, Theorem 1.5, and put in all
the details. Note that for i # j the matrix Ej is nilpotent, so for variable ¢,
the exponential series exp(Ej;) is actually a polynomial. The derivative with
respect to ¢ can be taken in the formal power series F[[7]], not using limits. If
X is a matrix, and x(¢) = exp(¢X), show that

X0 Yx()™'| =XY-YX=[X, Y]
=0



CHAPTER X I V

Representation of One
Endomorphism

We deal here with one endomorphism of a module, actually a free module,
and especially a finite dimensional vector space over a field k. We obtain the
Jordan canonical form for a representing matrix, which has a particularly simple
shape when £ is algebraically closed. This leads to a discussion of eigenvalues
and the characteristic polynomial. The main theorem can be viewed as giving
an example for the general structure theorem of modules over a principal ring.
In the present case, the principal ring is the polynomial ring k{X] in one variable.

§1. REPRESENTATIONS

Let k be a commutative ring and E a module over k. As usual, we denote by
End,(E) the ring of k-endomorphisms of E, i.e. the ring of k-linear maps of E into
itself.

Let R be a k-algebra (given by a ring-homomorphism k — R which allows
us to consider R as a k-module). By a representation of R in E one means a k-
algebra homomorphism R — End,(E), that is a ring-homomorphism

p: R — End(E)

which makes the following diagram commutative:
R ———End(E)
k
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[As usual, we view End(E) as a k-algebra; if I denotes the identity map of E,
we have the homomorphism of k into End,(E) given by a+ al. We shall also
use I to denote the unit matrix if bases have been chosen. The context will
always make our meaning clear.]

We shall meet several examples of representations in the sequel, with various
types of rings (both commutative and non-commutative). In this chapter, the
rings will be commutative.

We observe that E may be viewed as an End,(E) module. Hence E may be
viewed as an R-module, defining the operation of R on E by letting

(x, v) = p(x)v

for xe R and ve E. We usually write xv instead of p(x)v.

A subgroup F of E such that RF < F will be said to be an invariant sub-
module of E. (It is both R-invariant and k-invariant.) We also say that it is
invariant under the representation.

We say that the representation is irreducible, or simple, if E # 0, and if the
only invariant submodules are 0 and E itself.

The purpose of representation theories is to determine the structure of all
representations of various interesting rings, and to classify their irreducible
representations. In most cases, we take k to be a field, which may or may not
be algebraically closed. The difficulties in proving theorems about representa-
tions may therefore lie in the complication of the ring R, or the complication of
the field k, or the complication of the module E, or all three.

A representation p as above is said to be completely reducible or semi-simple
if E is an R-direct sum of R-submodules E;,

E=E ® - --®E,

such that each E; is irreducible. We also say that E is completely reducible.
It is not true that all representations are completely reducible, and in fact those
considered in this chapter will not be in general. Certain types of completely
reducible representations will be studied later.

There is a special type of representation which will occur very frequently.
Let ve E and assume that E = Rv. We shall also write E = (v). We then say
that E is principal (over R), and that the representation is principal. If that is
the case, the set of elements x € R such that xv = Qis a left ideal a of R (obvious).
The map of R onto E given by

X XU
induces an isomorphism of R-modules,
R/a - E

(viewing R as a left module over itself, and R/a as the factor module). In this
map, the unit element 1 of R corresponds to the generator v of E.
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As a matter of notation, if v, ..., v, € E, we let (vy, ..., v,) denote the sub-
module of E generated by vy, ..., v,.
Assume that E has a decomposition into a direct sum of R-submodules

E=E,® - ®E,

Assume that each E; is free and of dimension = 1 over k. Let ®,,..., B, be
bases for E, . . ., E, respectively over k. Then { B, ..., ®,}is a basis for E.
Let ¢ € R, and let ¢; be the endomorphism induced by ¢ on E;. Let M, be the
matrix of ¢; with respect to the basis ® ;. Then the matrix M of ¢ with respect
to{®,..., B} looks like

M, 0 ... 0
0 M, -~ 0
0 0
0 - 0 M,

A matrix of this type is said to be decomposed into blocks, M, ... M. When
we have such a decomposition, the study of ¢ or its matrix is completely reduced
(so to speak) to the study of the blocks.

It does not always happen that we have such a reduction, but frequently
something almost as good happens. Let E’ be a submodule of E, invariant
under R. Assume that there exists a basis of E’ over k, say {v,, ..., v,}, and that
this basis can be completed to a basis of E,

{Ul,~-~avm’vm+l?“'svn}'

This is always the case if k is a field.
Let ¢ € R. Then the matrix of ¢ with respect to this basis has the form

M ¥
( 0 MN)’
Indeed, since E’ is mapped into itself by ¢, it is clear that we get M’ in the upper

left, and a zero matrix below it. Furthermore, foreachj =m + 1,...,nwe can
write

oV = levl + ...+ ijvm + Cj,m + 1Un + 1 + ...+ Cjnvn'

The transpose of the matrix (c;;) then becomes the matrix

(o)

occurring on the right in the matrix representing ¢.
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Furthermore, consider an exact sequence
0-E ->E-E -0

Letd,,y,...,0, be the images of v, {, ..., v, under the canonical map E — E”.
We can define a linear map

(PH . E/r N E//

in a natural way so that (¢r) = ¢"(9) for all ve E. Then it is clear that the
matrix of ¢” with respect to the basis {7, ..., 7,} is M".

§2. DECOMPOSITION OVER ONE
ENDOMORPHISM

Let k be a field and E a finite-dimensional vector space over k, E # 0. Let
A € End,(E) be a linear map of E into itself. Let ¢ be transcendental over k. We
shall define a representation of the polynomial ring k[¢] in E. Namely, we have
a homomorphism
k[t] - k[A] = End(E)

which is obtained by substituting A for ¢ in polynomials. The ring k[A] is the
subring of End,(E) generated by A, and is commutative because powers of A
commute with each other. Thus if f(¢) is a polynomial and v € E, then

f@v = f(A.

The kernel of the homomorphism f(t) — f(A) is a principal ideal of k[¢],
which is # 0O because k[ 4] is finite dimensional over k. It is generated by a
unique polynomial of degree > 0, having leading coefficient 1. This polynomial
will be called the minimal polynomial of 4 over k, and will be denoted by g ,(¢).
It is of course not necessarily irreducible.

Assume that there exists an element ve E such that E = k[t]v = k[A]v.
This means that E is generated over k by the elements

v, Av, A%, . ...

We called such a module principal, and if R = k[t] we may write E = Rv = (v).
If g t) = t* + a;_t*~' + .-+ + a, then the elements

v, Av, ..., A"

constitute a basis for E over k. This is proved in the same way as the analogous
statement for finite field extensions. First we note that they are linearly inde
pendent, because any relation of linear dependence over k would yield a poly-
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nomial g(t) of degree less than deg g, and such that g(4) = 0. Second, they
generate E because any polynomial f(¢) can be written f(¢) = g(t)q(t) + r(t)
with deg r < deg g,. Hence f(A) = r(A).

With respect to this basis, it is clear that the matrix of 4 is of the following
type:

000 - 0 —a
1 00 -~ 0 -—q
010 .- 0 -—a,
0 0 0 0 _ad_Z
000 - 1 —a,_,

If E = (v) is principal, then E is isomorphic to k[t]/(¢(t)) under the map
f(®)—f(A). The polynomial q, is uniquely determined by A, and does not
depend on the choice of generator v for E. This is essentially obvious, because
if f1, f, are two polynomials with leading coefficient 1, then k[t]/( f1(t)) is iso-
morphic to k[t]/( fo()) if and only if f; = f,. (Decompose each polynomial into
prime powers and apply the structure theorem for modules over principal rings.)

If E is principal then we shall call the polynomial ¢, above the polynomial
invariant of E, with respect to A4, or simply its invariant.

Theorem 2.1. Let E be a non-zero finite-dimensional space over the field k,
and let A€ End(E). Then E admits a direct sum decomposition

E=E ® --®E,,
where each E; is a principal k[ A]-submodule, with invariant q; # 0 such that

q11921---14,.

The sequence (qy, ..., q,) is uniquely determined by E and A, and q, is the
minimal polynomial of A.

Proof. The first statement is simply a rephrasing in the present language
for the structure theorem for modules over principal rings. Furthermore, it is
clear that g,(4) = 0 since g;|q, for each i. No polynomial of lower degree than
g, can annihilate E, because in particular, such a polynomial does not annihilate
E,. Thus g, is the minimal polynomial.

We shall call (¢, . .., g,) the invariants of the pair (E, A). Let E = k™, and
let A be an n x n matrix, which we view as a linear map of E into itself. The
invariants (q,, ..., q,) will be called the invariants of 4 (over k).

Corollary 2.2. Let k' be an extension field of k and let A be ann x n matrix
in k. The invariants of A over k are the same as its invariants over k’.
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Proof. Let {vy,...,v,} be a basis of k™ over k. Then we may view it also
as a basis of k'™ over k’. (The unit vectors are in the k-space generated by
vy, ..., U,; hence vy, ..., v, generate the n-dimensional space k'™ over k'.) Let

E = k™. Let L, be the linear map of E determined by A. Let L/ be the linear
map of k'™ determined by A. The matrix of L , with respect to our given basis is
the same as the matrix of L,. We can select the basis corresponding to the
decomposition

E=E & - QE

determined by the invariants q,, ..., g,. It follows that the invariants don’t
change when we lift the basis to one of k'™,

Corollary 2.3. Let A, B be n x n matrices over a field k and let k' be an
extension field of k. Assume that there is an invertible matrix C' in k' such that
B = C'AC'"'. Thenthereisaninvertible matrix C ink suchthat B = CAC™*.

Proof. Exercise.

The structure theorem for modules over principal rings gives us two kinds
of decompositions. One is according to the invariants of the preceding theorem.
The other is according to prime powers.

Let E # 0 be a finite dimensional space over the field k, and let A: E — E
bein End,(F). Letq = q,beits minimal polynomial. Then g has a factorization,

q=p7"p¢  (a21)
into prime powers (distinct). Hence E is a direct sum of submodules
E=E(p,) @ @ E(py),

such that each E(p;) is annihilated by pf'. Furthermore, each such submodule
can be expressed as a direct sum of submodules isomorphic to k[t]/(p®) for
some irreducible polynomial p and some integer e = 1.

Theorem 2.4. Let q,(t) = (t — )¢ for some awck, e = 1. Assume that E
is isomorphic to k[t]/(q). Then E has a basis over k such that the matrix of A
relative to this basis is of type

o 0
1 0
0
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Proof. Since E is isomorphic to k[t]/(g), there exists an element ve E
such that k[t]v = E. This element corresponds to the unit element of k[¢] in the
isomorphism

k[t1/(q) — E.

We contend that the elements

v, (t — o, ..., (t—a)f o,
or equivalently,

v,(A=ov,..., (4 — o) 1,

torm a basis for E over k. They are linearly independent over k because any
relation of linear dependence would yield a relation of linear dependence between

v, Av, ..., A v,

and hence would yield a polynomial g(t) of degree less than deg g such that
g(A) = 0. Since dim E = e, it follows that our elements form a basis for E
over k. But(4 — a)° = 0. Itis then clear from the definitions that the matrix of
A with respect to this basis has the shape stated in our theorem.

Corollary 2.5. Let k be algebraically closed, and let E be a finite-dimensional
non-zero vector space over k. Let A € End(E). Then there exists a basis of
E over k such that the matrix of A with respect to this basis consists of blocks,
and each block is of the type described in the theorem.

A matrix having the form described in the preceding corollary is said to be in
Jordan canonical form.

Remark 1. A matrix (or an endomorphism) N is said to be nilpotent if
there exists an integer d > 0 such that N = 0. We see that in the decomposition
of Theorem 2.4 or Corollary 2.5, the matrix M is written in the form

M=B+N

where N is nilpotent. In fact, N is a triangular matrix (i.e. it has zero coefficients
on and above the diagonal), and B is a diagonal matrix, whose diagonal elements
are the roots of the minimal polynomial. Such a decomposition can always be
achieved whenever the field k is such that all the roots of the minimal polynomial
lie in k. We observe also that the only case when the matrix N is 0 is when all
the roots of the minimal polynomial have multiplicity 1. In this case, if
n = dim E, then the matrix M is a diagonal matrix, with n distinct elements on
the diagonal.
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Remark 2. The main theorem of this section can also be viewed as falling
under the general pattern of decomposing a module into a direct sum as far as
possible, and also giving normalized bases for vector spaces with respect to
various structures, so that one can tell in a simple way the effect of an endo-
morphism. More formally, consider the category of pairs (E, A), consisting
of a finite dimensional vector space E over a field k, and an endomorphism
A: E— E. By a morphism of such pairs

f(E, A)—> (E', A)

we mean a k-homomorphism f: E — E’ such that the following diagram is
commutative:

e L F

N

E—F—F

f

It is then immediate that such pairs form a category, so we have the notion of
isomorphism. One can reformulate Theorem 2.1 by stating:

Theorem 2.6. Two pairs (E, A) and (F, B) are isomorphic if and only if they
have the same invariants.

You can prove this as Exercise 19. The Jordan basis gives a normalized form
for the matrix associated with such a pair and an appropriate basis.

In the next chapter, we shall find conditions under which a normalized matrix
is actually diagonal, for hermitian, symmetric, and unitary operators over the
complex numbers.

As an example and application of Theorem 2.6, we prove:

Corollary 2.7. Let k be a field and let K be a finite separable extension of
degree n. Let V be a finite dimensional vector space of dimension n over k, and
let p, p' : K — Endy(V) be two representations of K on V; that is, embeddings
of K in Endy(V). Then p, p' are conjugate; that is, there exists B € Aut;(V)
such that

p'(§) = Bp(§)B~! for all é € K.

Proof. By the primitive element theorem of field theory, there exists an
element o € K such that K = k[a]. Let p(¢) be the irreducible polynomial of «
over k. Then (V, p(a)) and (V, p'(a)) have the same invariant, namely p().
Hence these pairs are isomorphic by Theorem 2.6, which means that there exists
B € Aut(V) such that

p'(@) = Bp(a)B~".

But all elements of K are linear combinations of powers of a with coefficients
in k, so it follows immediately that p'(§) = Bp(£)B~! for all £ € K, as desired.
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To get a representation of K as in corollary 2.7, one may of course select a
basis of K, and represent multiplication of elements of K on K by matrices with
respect to this basis. In some sense, Corollary 2.7 tells us that this is the only
way to get such representations. We shall return to this point of view when
considering Cartan subgroups of GL, in Chapter XVIII, §12.

§3. THE CHARACTERISTIC POLYNOMIAL

Let k be a commutative ring and E a free module of dimension n over k.
We consider the polynomial ring k[¢], and a linear map A: E - E. We have a
homomorphism

k[t] — k[A]

as before, mapping a polynomial f(t) on f(A4), and E becomes a module over
the ring R = k[f]. Let M be any n X n matrix in k (for instance the matrix of A
relative to a basis of E). We define the characteristic polynomial P,,() to be the
determinant

det(¢I, — M)

where I, is the unit n x n matrix. It is an element of k[¢]. Furthermore, if N
is an invertible matrix in R, then

det(t, — N"'MN) = det(N~\(tI, — M)N) = det(tI, — M).

Hence the characteristic polynomial of N~ !MN is the same as that of M. We
may therefore define the characteristic polynomial of 4, and denote by P, the
characteristic polynomial of any matrix M associated with A4 with respect to
some basis. (If E = 0, we define the characteristic polynomial to be 1.)

If ¢ :k — k' is a homomorphism of commutative rings, and M is an n x n
matrix in k, then it is clear that

Pou(t) = @Py(t)

where @P), is obtained from P, by applying ¢ to the coefficients of P,,.
Theorem 3.1. (Cayley-Hamilton). We have P,(A) = 0.
Proof. Let {v,,...,v,} be a basis of E over k. Then
tvj = Z aijvi
i=1

where (a;)) = M is the matrix of A with respect to the basis. Let B(t) be the
matrix with coefficients in k[¢], defined in Chapter XIII, such that

B(t)B(t) = P (1)1,
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Then
v, P ,(t)vy 0
B(1)B(z) = =1:
v, P (t), 0
because
vy 0
Bo)| i | =
VU, 0

Hence P,(t)E = 0, and therefore P,(A)E = 0. This means that P (4) = 0,
as was to be shown.

Assume now that & is a field. Let E be a finite-dimensional vector space over
k, and let A € End,(E). By an eigenvector w of 4 in E one means an element
w € E, such that there exists an element A € k for which Aw = Aw. If w # 0, then
A is determined uniquely, and is called an eigenvalue of 4. Of course, distinct
eigenvectors may have the same eigenvalue.

Theorem 3.2. The eigenvalues of A are precisely the roots of the character-
istic polynomial of A.

Proof. Let A be an eigenvalue. Then A — Al is not invertible in End,(E),
and hence det(4 — AI) = 0. Hence A is a root of P,. The arguments are re-
versible, so we also get the converse.

For simplicity of notation, we often write 4 — A instead of A — Al

Theorem 3.3. Let w,, ..., w,, be non-zero eigenvectors of A, having distinct
eigenvalues. Then they are linearly independent.

Proof. Suppose that we have
alwl + - +a,,,W,,,=0

with a; € k, and let this be a shortest relation with not all ¢; = 0 (assuming such
exists). Then q; # O for all i. Let 4, ..., 4, be the eigenvalues of our vectors.
Apply A — A, to the above relation. We get

ay(Ay — Awy + - + @Ay — AW, = 0,
which shortens our relation, contradiction.

Corollary 3.4. If A has n distinct eigenvalues A, ..., A, belonging to eigen-
vectors vy,...,v,,and dim E = n, then {v,,...,v,} is a basis for E. The matrix
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of A with respect to this basis is the diagonal matrix:

A, 0
A,

0 Au

Warning. It is not always true that there exists a basis of E consisting of
eigenvectors!

Remark. Let k be a subfield of k'. If M is a matrix in k, we can define its
characteristic polynomial with respect to k, and also with respect to k'. It is
clear that the characteristic polynomials thus obtained are equal. If E is a vector
space over k, we shall see later how to extend it to a vector space over k. A
linear map A extends to a linear map of the extended space, and the character-
istic polynomial of the linear map does not change either. Actually, if we select
a basis for E over k,then E ~ k™, and k™ < k'™ in a natural way. Thus selecting
a basis allows us to extend the vector space, but this seems to depend on the
choice of basis. We shall give an invariant definition later.

Let E=E @ --®E, be an expression of E as a direct sum of vector
spaces over k. Let A € End,(E), and assume that AE;  E;foralli=1,...,r.
Then A induces a linear map on E;. We can select a basis for E consisting of
bases for E, ..., E,, and then the matrix for 4 consists of blocks. Hence we see
that

PO = [TPa(0

Thus the characteristic polynomial is multiplicative on direct sums.

Our condition above that AE; < E; can also be formulated by saying that
E is expressed as a k[ A]-direct sum of k[ A]-submodules, or also a k[t]-direct
sum of k[t]-submodules. We shall apply this to the decomposition of E given
in Theorem 2.1.

Theorem 3.5. Let E be a finite-dimensional vector space over a field k, let
A€ End(E), and let q,, ..., q, be the invariants of (E, A). Then

P4(1) = q1(8) - -~ ¢, (D).

Proof. We assume that E = k™ and that A is represented by a matrix M.
We have seen that the invariants do not change when we extend k to a larger
field, and neither does the characteristic polynomial. Hence we may assume that
k is algebraically closed. In view of Theorem 2.1 we may assume that M has a
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single invariant q. Write

a0) = (t = 2 - = )

with distinct a,, ..., «,. We view M as a linear map, and split out vector space
further into a direct sum of submodules (over k[t]) having invariants

¢ — o)), ..., @1t —a)

respectively (this is the prime power decomposition). For each one of these
submodules, we can select a basis so that the matrix of the induced linear map has
the shape described in Theorem 2.4. From this it is immediately clear that the
characteristic polynomial of the map having invariant (t — a)° is precisely
(t — a)¢, and our theorem is proved.

Corollary 3.6. The minimal polynomial of A and its characteristic poly-
nomial have the same irreducible factors.

Proof. Because g, is the minimal polynomial, by Theorem 2.1.

We shall generalize our remark concerning the multiplicativity of the
characteristic polynomial over direct sums.

Theorem 3.7. Let k be a commutative ring, and in the following diagram,

0——EF——>E—E' —0

0——E——E——E ——0

let the rows be exact sequences of free modules over k, of finite dimension, and
let the vertical maps be k-linear maps making the diagram commutative. Then

P4(t) = P4 ()P 4(1).

Proof. We may assume that E’ is a submodule of E. We select a basis
{vy,...,0,) for E. Let {§,,,,..., 0} be a basis for E”, and let v, ¢, ..., U,
be elements of E mapping on ¥,,, 1, - . ., U, respectively. Then

(V1. s Vs Umats---s Unt

is a basis for E (same proof as Theorem 5.2 of Chapter IIT), and we are in the
situation discussed in §1. The matrix for A4 has the shape

M *
(5 )
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where M’ is the matrix for 4’ and M" is the matrix for A”. Taking the character-
istic polynomial with respect to this matrix obviously yields our multiplicative

property.

Theorem 3.8. Let k be a commutative ring, and E a free module of dimension
nover k. Let A€ End(E). Let

Pty =1"+ cuyt" P 4+ co.
Then
tr(4) = —c,_; and det(4) = (—1)"c,.

Proof. For the determinant, we observe that P,(0) = ¢,. Substituting
t = 0in the definition of the characteristic polynomial by the determinant shows
that ¢, = (—1)" det(A).

For the trace, let M be the matrix representing A with respect to some basis,
M = (a;). We consider the determinant det(t/, — a;). In its expansion as a sum
over permutations, it will contain a diagonal term

(t - all) e (t - ann)a
which will give a contribution to the coefficient of "~ ! equal to
—(ayy + 0+ au)

No other term in this expansion will give a contribution to the coefficient of
t"~1, because the power of t occurring in another term will be at most "~ 2.
This proves our assertion concerning the trace.

Corollary 3.9. Let the notation be as in Theorem 3.7. Then
tr(A) = tr(4A") + tr(4”) and det(A4) = det(A4’) det(4").
Proof. Clear.

We shall now interpret our results in the Euler-Grothendieck group.
Let k be a commutative ring. We consider the category whose objects are
pairs (E, A), where E is a k-module, and A4 € End,(E). We define a morphism

(E', 4) - (E, A)
to be a k-linear map E' LE making the following diagram commutative:

E—LE
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Then we can define the kernel of such a morphism to be again a pair. Indeed,
let E; be the kernel of f: E' - E. Then A’ maps Ej, into itself because

fA'E, = AfE, = 0.

We let Ay be the restriction of A’ on E,. The pair (Ejy, Ap) is defined to be the
kernel of our morphism.

We shall denote by f again the morphism of the pair (E', A") — (E, A). We
can speak of an exact sequence

(E', 4) > (E, 4) - (E", A7),
meaning that the induced sequence
E - E—->E"

is exact. We also write 0 instead of (0, 0), according to our universal convention
to use the symbol O for all things which behave like a zero element.

We observe that our pairs now behave formally like modules, and they in
fact form an abelian category.

Assume that k is a field. Let @ consist of all pairs (E, A) where E is finite
dimensional over k.

Then Theorem 3.7 asserts that the characteristic polynomial is an Euler-
Poincaré map defined for each object in our category @, with values into the
multiplicative monoid of polynomials with leading coefficient 1.

Since the values of the map are in a monoid, this generalizes slightly the notion
of Chapter III, §8, when we took the values in a group. Of course when & is a
field, which is the most frequent application, we can view the values of our map
to be in the multiplicative group of non-zero rational functions, so our previous
situation applies.

A similar remark holds now for the trace and the determinant. If k is a
field, the trace is an Euler map into the additive group of the field, and the deter-
minant is an Euler map into the multiplicative group of the field. We note also that
all these maps (like all Euler maps) are defined on the isomorphism classes of
pairs, and are defined on the Euler-Grothendieck group.

Theorem 3.10. Let k be a commutative ring, M an n x n matrix in k, and f
a polynomial in k[t]. Assume that Py(t) has a factorization,

Py(t) = I——Ix(t - @)

into linear factors over k. Then the characteristic polynomial of f(M) is
given by

Pron(t) = l_—ll(t — f(@),
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and

tr(f(M)) = if (o), det(f(M)) = _[[lf ().

i=1

Proof. Assume first that k is a field. Then using the canonical decomposi-
tion in terms of matrices given in Theorem 2.4, we find that our assertion is
immediately obvious. When k is a ring, we use a substitution argument. It is
however necessary to know that if X = (x;;) is a matrix with algebraically
independent coefficients over Z, then Py(t) has n distinct roots yy, ..., y, [in
an algebraic closure of Q(X)] and that we have a homomorphism

Z[xij’yl""’yn]")k

mapping X on M and y,,...,y,onay,...,qa, Thisisobviousto the reader who
read the chapter on integral ring extensions, and the reader who has not can
forget about this part of the theorem.

EXERCISES

1. Let T be an upper triangular square matrix over a commutative ring (i.e. all the ele-
ments below and on the diagonal are 0). Show that T is nilpotent.

2. Carry out explicitly the proof that the determinant of a matrix

M, x %
0 M,

o o0 . *
0 0 -~ 0 M,

where each M; is a square matrix, is equal to the product of the determinants of the
matrices M,, ..., M,.

3. Let k be a commutative ring, and let M, M’ be square n x n matrices in k. Show that
the characteristic polynomials of MM’ and M’M are equal.

4. Show that the eigenvalues of the matrix

-0 O O
S O O -
(=R ]
o - O O

in the complex numbers are + 1, + i.
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10.

11.

12.

. Let M, M’ be square matrices over a field k. Let g, ¢’ be their respective minimal

polynomials. Show that the minimal polynomial of

(v )

is the least common multiple of g, ¢'.

. Let A4 be a nilpotent endomorphism of a finite dimensional vector space E over the field

k. Show that tr(4) = 0.

. LetR be a principal entire ring. Let E be a free module over R, and let EY = Homg(E, R)

be its dual module. Then EV is free of dimension n. Let F be a submodule of E.
Show that EY/FL can be viewed as a submodule of FV, and that its invariants are
the same as the invariants of F in E.

. Let E be a finite-dimensional vector space over a field k. Let 4 € Aut,(E). Show that

the following conditions are equivalent:
(@) A =1+ N, with N nilpotent.
(b) There exists a basis of E such that the matrix of 4 with respect to this basis has
all its diagonal elements equal to 1 and all elements above the diagonal equal
to 0.
(c) All roots of the characteristic polynomial of 4 (in the algebraic closure of k)
are equal to 1.

. Let k be a field of characteristic 0, and let M be an n x n matrix in k. Show that M is

nilpotent if and only if tr(M*) = 0for 1 S v < n.

Generalize Theorem 3.10 to rational functions (instead of polynomials), assuming
that k is a field.

Let E be a finite-dimensional space over the field k. Let a € k. Let E, be the subspace
of E generated by all eigenvectors of a given endomorphism A of E, having « as an
eigenvalue. Show that every non-zero element of E, is an eigenvector of 4 having « as
an eigenvalue.

Let E be finite dimensional over the field k. Let A € End,(E). Let v be an eigenvector
for A. Let B € End,(E) be such that AB = BA. Show that Bu is also an eigenvector
for A (if Bv # 0), with the same eigenvalue.

Diagonalizable endomorphisms

Let E be a finite-dimensional vector space over a field k, and let S € End,(E). We say
that S is diagonalizable if there exists a basis of E consisting of eigenvectors of S. The
matrix of S with respect to this basis is then a diagonal matrix.

13. (a) If S is diagonalizable, then its minimal polynomial over k is of type

a® = [ (-2,
i=1
where 4,, ..., 4,, are distinct elements of k.
(b) Conversely, if the minimal polynomial of S is of the preceding type, then S is
diagonalizable. [Hint: The space can be decomposed as a direct sum of the
subspaces E,, annihilated by § — 4;.]
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14.

16.

17.
18.

(c) If S is diagonalizable, and if F is a subspace of E such that SF < F, show that S
is diagonalizable as an endomorphism of F, i.e. that F has a basis consisting of
eigenvectors of S.

(d) Let S, T be endomorphisms of E, and assume that S, T commute. Assume that
both S, T are diagonalizable. Show that they are simultaneously diagonalizable,
i.e. there exists a basis of E consisting of eigenvectors for both S and T. [Hint:
If A is an eigenvalue of S, and E, is the subspace of E consisting of all vectors v
such that Sv = Av, then TE, < E,.]

Let E be a finite-dimensional vector space over an algebraically closed field k. Let
A € End,(E). Show that 4 can be written in a unique way as a sum

A=S+N

where S is diagonalizable, N is nilpotent, and SN = NS. Show that S, N can be ex-
pressed as polynomials in A. [Hint: Let P,(t) =[] (+ — )™ be the factorization
of P () with distinct A;. Let E; be the kernel of (4 — A,)™. Then E is the direct sum of
the E;. Define S on E so that on E;, Sv = A,v forall ve E;. Let N=A4 — S. Show
that S, N satisfy our requirements. To get S as a polynomial in 4, let g be a polynomial
such that g(t) = A4;mod (r — )™ for all i, and g(t) = Omodt. Then § = g(A4)
and N = 4 — g(4).]

. After you have read the section on the tensor product of vector spaces, you can easily

do the following exercise. Let E, F be finite-dimensional vector spaces over an alge-
braically closed field k, and let A: E —» E and B: F — F be k-endomorphisms of E, F,
respectively. Let

P)=T]@~a) and Pgt)=]](— B)™

be the factorizations of their respectively characteristic polynomials, into distinct
linear factors. Then

PLes(t) = H (t — 0B,

[Hint: Decompose E into the direct sum of subspaces E;, where E; is the subspace of
E annihilated by some power of A — «;. Do the same for F, getting a decomposition
into a direct sum of subspaces F;. Then show that some power of A ® B — «;f;
annihilates E; ® F;. Use the fact that E ® F is the direct sum of the subspaces E; @ F,
and that dim(E; ® F)) = n;m;.

Let I' be a free abelian group of dimension n = 1. Let I'" be a subgroup of dimension n
also. Let {vy,...,v,} be a basis of I', and let {w,,...,w,} be a basis of I". Write

w; =Y a;v;.
Show that the index (I": ") is equal to the absolute value of the determinant of the
matrix (a;;).
Prove the normal basis theorem for finite extensions of a finite field.

Let A = (a;;) be asquare n x nmatrix over acommutative ring k. Let 4;; be the matrix
obtained by deleting the i-th row and j-th column from A. Let b;; = (—1)"*/ det(4}),
and let B be the matrix (b;;). Show that det(B) = det(4)" ", by reducing the problem to
the case when A is a matrix with variable coefficients over the integers. Use this same
method to give an alternative proof of the Cayley-Hamilton theorem, that P (4) = 0.
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19.

20.

21.

22.

23.

24.

25.

Let (E, A) and (E', A) be pairs consisting of a finite-dimensional vector space over a
field k, and a k-endomorphism. Show that these pairs are isomorphic if and only if
their invariants are equal.

(a) How many non-conjugate elements of GL,(C) are there with characteristic poly-
nomial £3(t + 1)2(t — 1)?
(b) How many with characteristic polynomial > — 100177

Let V be a finite dimensional vector space over Q and let A: V— V be a Q-linear
map such that A> = Id. Assume that if v € V is such that Av = v, then v = 0. Prove
that dim V is divisible by 4.

Let V be a finite dimensional vector space over R, and let A: V — V be an R-linear
map such that A2 = —Id. Show that dim V is even, and that V is a direct sum of 2-
dimensional A-invariant subspaces.

Let E be a finite-dimensional vector space over an algebraically closed field k. Let
A, B be k-endomorphisms of E which commute, i.e. AB = BA. Show that 4 and B have
a common eigenvector. [Hint: Consider a subspace consisting of all vectors having
a fixed element of k as eigenvalue.]

Let V be a finite dimensional vector space over a field k. Let A be an endomorphism
of V. Let Tr(A™) be the trace of A™ as an endomorphism of V. Show that the following
power series in the variable ¢ are equal:

. . .
exp( 21 —Tr(A'")%n—) = det(l — tA) or —d% log det(I — tA) = 21 Tr(A™)t™,
m= m=

Compare with Exercise 23 of Chapter XVIII.

Let V, W be finite dimensional vector spaces over k, of dimension n. Let (v, w) >
(v, w) be a non-singular bilinear form on V X W. Let ¢ € k, and let A: V— V and
V: W — W be endomorphisms such that

(Av, Bw) = c{v, w) forallv € Vand w € W.
Show that
det(A)det(t — B) = (—1)"det(cl — tA)
and
det(A)det(B) = c”".

For an application of Exercises 24 and 25 to a context of topology or algebraic

geometry, see Hartshorne’s Algebraic Geometry, Appendix C, §4.

26.

Let G = SL,(C) and let K be the complex unitary group. Let 4 be the group of di-
agonal matrices with positive real components on the diagonal.
(a) Show that if g € Norg(4) (normalizer of 4 in G), then ¢(g) (conjugation by
g) permutes the diagonal components of A4, thus giving rise to a homo-
morphism Norg(4) — W to the group W of permutations of the diagonal
coordinates.
By definition, the kernel of the above homomorphism is the centralizer Ceng(4).
(b) Show that actually all permutations of the coordinates can be achieved by
elements of K, so we get an isomorphism

W = Norg(4)/Ceng(A) ~ Norg(A4)/Ceng (A).

In fact, the K on the right can be taken to be the real unitary group, because
permutation matrices can be taken to have real components (0 or +1).



CHAPTER XV

Structure of Bilinear Forms

There are three major types of bilinear forms: hermitian (or symmetric),
unitary, and alternating (skew-symmetric). In this chapter, we give structure
theorems giving normalized expressions for these forms with respect to suitable
bases. The chapter also follows the standard pattern of decomposing an object
into a direct sum of simple objects, insofar as possible.

§1. PRELIMINARIES, ORTHOGONAL SUMS

The purpose of this chapter is to go somewhat deeper into the structure
theory for our three types of forms. To do this we shall assume most of the time
that our ground ring is a field, and in fact a field of characteristic # 2 in the
symmetric case.

We recall our three definitions. Let E be a module over a commutative
ring R. Letg: E x E —» Rbe amap. Ifg is bilinear, we call g a symmetric form
if g(x, y) = g(y, x) for all x, y € E. We call g alternating if g(x, x) = 0, and hence
g(x,y) = —g(y, x) for all x, ye E. If R has an automorphism of order 2,
written a > a, we say that g is a hermitian form if it is linear in its first variable,
antilinear in its second, and

g(x, y) = g(y, x).

We shall write g(x, y) = {x, y) if the reference to g is clear. We also oc-
casionally write g(x, y) = x -y or g(x, x) = x*>. We sometimes call g a scalar
product.

571
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Ifv,...,v,€E, wedenote by (vy,...,v,) the submodule of E generated by
Uty e vns Upe
Let g be symmetric, alternating, or hermitian. Then it is clear that the left
kernel of g is equal to its right kernel, and it will simply be called the kernel of g.

In any one of these cases, we say that g is non-degenerate if its kernel is 0.
Assume that E is finite dimensional over the field k. The form is non-degenerate
if and only if it is non-singular, i.e., induces an isomorphism of E with its dual
space (anti-dual in the case of hermitian forms).

Except for the few remarks on the anti-linearity made in the previous
chapter, we don’t use the results of the duality in that chapter. We need only
the duality over fields, given in Chapter III. Furthermore, we don’t essentially
meet matrices again, except for the remarks on the pfaffian in §10.

We introduce one more notation. In the study of forms on vector spaces,
we shall frequently decompose the vector space into direct sums of orthogonal
subspaces. If E is a vector space with a form g as above, and F, F’ are subspaces,
we shall write

E=F1F

to mean that E is the direct sum of F and F’, and that F is orthogonal (or
perpendicular) to F’, in other words, x L y (or {x, y> = 0) for all xe F and
y€ F'. We then say that E is the orthogonal sum of F and F’. There will be no
confusion with the use of the symbol L when we write F L F’to mean simply that
F is perpendicular to F'. The context always makes our meaning clear.

Most of this chapter is devoted to giving certain orthogonal decompositions
of a vector space with one of our three types of forms, so that each factor in the sum
is an easily recognizable type.

In the symmetric and hermitian case, we shall be especially concerned with
direct sum decompositions into factors which are 1-dimensional. Thus if
{, » is symmetric or hermitian, we shall say that {v,,...,v,} is an orthogonal
basis (with respect to the form) if {v;, v;> = 0 whenever i # j. We see that an
orthogonal basis gives such a decomposition. If the form is nondegenerate,
and if {v,, ..., v,} is an orthogonal basis, then we see at once that <v;, v;> # 0
for all i.

Proposition 1.1.  Let E be a vector space over the field k, and let g be a form
of one of the three above types. Suppose that E is expressed as an orthogonal
sum,

E=E L---LE,.

Then g is non-degenerate on E if and only if it is non-degenerate on each E;.
If E? is the kernel of the restriction of g to E;, then the kernel of g in E is the
orthogonal sum

E°=E%1...LE°.
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Proof. Elements v, w of E can be written uniquely

with v;, w;€ E;. Then

m
vew =Y v w,
=1

and v-w=0if v;-w; =0 for each i =1, ..., m. From this our assertion is
obvious.
Observe thatif E, .. ., E,, are vector spaces over k, and ¢4, . . ., ¢,, are forms

on these spaces respectively, then we can defineaformg = g, @ --- @ g,, on the
direct sum E = E; @ --- ® E,,; namely if v, w are written as above, then we let

gv, w) = Z giv;, wy).

It is then clear that, in fact, we have E = E; 1 --- 1L E,. We could also write
g=91L-Lgn

Proposition 1.2, Let E be a finite-dimensional space over the field k, and let
g be a form of the preceding type on E. Assume that g is non-degenerate. Let
F be a subspace of E. The form is non-degenerate on F if and only if
F + F* = E, and also if and only if it is non-degenerate on F*.

Proof. We have (as a trivial consequence of Chapter III, §5)
dim F + dim F* = dim E = dim(F + F*) + dim(F n F').

Hence F + F* = E if and only if dim(F n F*) = 0. Our first assertion follows
at once. Since F, F* enter symmetrically in the dimension condition, our second
assertion also follows.

Instead of saying that a form is non-degenerate on E, we shall sometimes say,
by abuse of language, that E is non-degenerate.

Let E be a finite-dimensional space over the field k, and let g be a form of
the preceding type. Let E, be the kernel of the form. Then we get an induced
form of the same type

go:E/Ey x EJE, — k,
because g(x, y) depends only on the coset of x and the coset of y modulo E,.
Furthermore, g, is non-degenerate since its kernel on both sides is 0.

Let E, E' be finite-dimensional vector spaces, with forms g, g’ as above,
respectively. A linear map o: E — E’ is said to be metric if

g'(ox, ay) = g(x, y)
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or in the dot notation,ox - oy = x - yforall x, y€ E. If oisalinear isomorphism,
and is metric, then we say that ¢ is an isometry.

Let E, E, be as above. Then we have an induced form on the factor space
E/E,. If W is a complementary subspace of E,, in other words, E = E, @ W,
and if we let o : E — E/E be the canonical map, then ¢ is metric, and induces
an isometry of W on E/E,. This assertion is obvious, and shows that if

E=E,@W

is another direct sum decomposition of E, then W’ is isometric to W. We know
that W ~ E/E, is nondegenerate. Hence our form determines a unique non-
degenerate form, up to isometry, on complementary subspaces of the kernel.

§2. QUADRATIC MAPS

Let R be a commutative ring and let E, F be R-modules. We suppress the
prefix R- as usual. We recall that a bilinear map f: E x E — F is said to be
symmetric if f(x, y) = f(y, x) for all x, ye E.

We say that F is without 2-torsion if for all y € F such that 2y = 0 we have
y = 0. (This holds if 2 is invertible in R.)

Letf: E - F beamapping. We shall say that fis quadratic (i.e. R-quadratic)
if there exists a symmetric bilinear mapg: E X E —» Fandalinearmaph: E — F
such that for all x € E we have

) = g(x, x) + h(x).

Proposition 2.1. Assume that F is without 2-torsion. Let f:E — F be
quadratic, expressed as above in terms of a symmetric bilinear map and a
linear map. Then g, h are uniquely determined by f. For all x, y € E we have

29(x,y) =f(x +y) = f(x) = f().

Proof. If we compute f(x + y) — f(x) — f(y), then we obtain 2g(x, y).
If g, is symmetric bilinear, h, is linear, and f(x) = g,(x, x) + h;(x), then
2g(x, y) = 2g,(x, y). Since F is assumed to be without 2-torsion, it follows that
g(x, y) = g,(x, y) for all x, y € E, and thus that g is uniquely determined. But
then h is determined by the relation

h(x) = f(x) — g(x, x).
We call g, h the bilinear and linear maps associated with f.
If f: E — F is a map, we define
Af:Ex E—-F
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by
Af(x,y) = f(x +y) = f(x) = f().

We say that f'is homogeneous quadratic if it is quadratic, and if its associated
linear map is 0. We shall say that F is uniquely divisible by 2 if for each ze F
there exists a unique u € F such that 2u = z. (Again this holds if 2 is invertible
inR)

Proposition 2.2. Let f: E — F be a map such that Af is bilinear. Assume
that F is uniquely divisible by 2. Then the map x> f(x) — $Af(x, x) is
Z-linear. If f satisfies the condition f(2x) = 4f(x), then f is homogeneous
quadratic.

Proof. Obvious.

By a quadratic form on E, one means a homogeneous quadratic map
f:E— R, with values in R.

In what follows, we are principally concerned with symmetric bilinear
forms. The quadratic forms play a secondary role.

§3. SYMMETRIC FORMS, ORTHOGONAL BASES

Let k be a field of characteristic + 2.

Let E be a vector space over k, with the symmetric form g. We say that g
is a null form or that E is a null space if {x, > = 0 for all x, ye E. Since we
assumed that the characteristic of k is # 2, the condition x> = 0 for all xe€ E
implies that g is a null form. Indeed,

Ay =(x+y7° ~(x -

Theorem 3.1. Let E be # 0 and finite dimensional over k. Let g be a sym-
metric form on E. Then there exists an orthogonal basis.

Proof. We assume first that g is non-degenerate, and prove our assertion by
induction in that case. If the dimension #n is 1, then our assertion is obvious.

Assume n > 1. Let v, € E be such that v # 0 (such an element exists since
g is assumed non-degenerate). Let F = (v,) be the subspace generated by v,.
Then F is non-degenerate, and by Proposition 1.2, we have

E=F+ F*+.

Furthermore, dim F* = n — 1. Let {v,,..., v,) be an orthogonal basis of F*.
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Then {v,,..., v,} are pairwise orthogonal. Furthermore, they are linearly
independent, for if

a vy +-~+a,,v,,=0

with g; € k then we take the scalar product with v; to get a;v? = 0 whence a; = 0
for all i.

Remark. We have shownin fact that if g is non-degenerate, and v € Eissuch
that v? # 0 then we can complete v to an orthogonal basis of E.

Suppose that the form g is degenerate. Let E, be its kernel. We can write
E as a direct sum

E=E,®@W

for some subspace W. The restriction of g to W is non-degenerate; otherwise
there would be an element of W which is in the kernel of E, and # 0. Hence if
{vy,..., v} isabasisof Ey,and {w,,...,w,_,} is an orthogonal basis of W, then

0,00y Uy Wiy ooy Wy}

is an orthogonal basis of E, as was to be shown.

Corollary 3.2. Let {v,,...,0,} be an orthogonal basis of E. Assume that
v} #0 for i <r and v} =0 for i >r. Then the kernel of E is equal to
(Ur+19 L] vn)'

Proof. Obvious.
If {v(, ..., v,} is an orthogonal basis of E and if we write
X = X0y + -+ + X,0,
with x; € k, then
X’ =a;xi +- +a,x}

where a; = (v;, v;>. In this representation of the form, we say that it is diagonal-
ized. With respect to an orthogonal basis, we see at once that the associated
matrix of the form is a diagonal matrix, namely

ay
da, 0
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Example. Note that Exercise 33 of Chapter XIII gave an interesting example
of an orthogonal decomposition involving harmonic polynomials.

§4. SYMMETRIC FORMS OVER ORDERED FIELDS

Theorem 4.1. (Sylvester) Let k be an ordered field and let E be a finite
dimensional vector space over k, with a non-degenerate symmetric form g. There
exists an integer r = 0 such that, if {v,,...,v,} is an orthogonal basis of E,
then precisely r among the n elements v3, . .., v2 are > 0, and n — r among

these elements are < 0.

Proof. Leta; = v}, fori=1,...,n. After renumbering the basis elements,
saya,,...,a, > Oandag; < Ofori > r. Let {w,, ..., w,} beanyorthogonal basis,
and let b, = w?. Say by,..., b, > 0and b; < 0for j > s. We shall prove that
r = s. Indeed, it will suffice to prove that

Uty oo s Upy Woi gy ee ey W,

are linearly independent, for then we get r + n — s < n, whence r < s, and
r = s by symmetry. Suppose that

X0+ F X0+ Vor (Werq + 0+ YW, =0,
Then
X+t X0, = = Yo Weig — 0 = Ya W
Squaring both sides yields
axi+ o+ ax] = byl 4o+ by

The left-hand side is = 0, and the right-hand side is £ 0. Hence both sides are
equal to 0, and it follows that x; = y; = 0, in other words that our vectors are
linearly independent.

Corollary 4.2. Assume that every positive element of k is a square. Then
there exists an orthogonal basis {vy, ..., v,} of E such that v} = 1 for i < r
and v} = —1 for i > r, and r is uniquely determined.

Proof. We divide each vector in an orthogonal basis by the square root of
the absolute value of its square.

A basis having the property of the corollary is called orthonormal. If X is an
element of E having coordinates (x, ..., x,) with respect to this basis, then

2 2 2
X:x1+...+xr_x3+1_..._x2

ne
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We say that a symmetric form g is positive definite if X> > 0 for all
X € E, X # 0. This is the case if and only if r = n in Theorem 4.1. We say
that g is negative definite if X2 < 0 forall X € E, X # 0.

Corollary 4.3. The vector space E admits an orthogonal decomposition
E = E* 1 E™ such that g is positive definite on E* and negative definite on
E~. The dimension of E* (or E™) is the same in all such decompositions.

Let us now assume that the form g is positive definite and that every positive
element of k is a square.
We define the norm of an element v € E by

v} = /v .
Then we have [v| > 0if v # 0. We also have the Schwarz inequality
lo-w| < [v]|w]
for all v, we E. This is proved in the usual way, expanding

0 < (av + bw)? = (av + bw)-(av + bw)

by bilinearity, and letting b = |v| and a = |w|. One then gets
F2abv-w < 2|v)?|w]%

If |[v| or |w| = 0 our inequality is trivial. If neither is 0 we divide by |v} |w|to get
what we want.
From the Schwarz inequality, we deduce the triangle inequality

o+ w| = o] +[w].

We leave it to the reader as a routine exercise.

When we have a positive definite form, there is a canonical way of getting an
orthonormal basis, starting with an arbitrary basis {v,, ..., v,} and proceeding
inductively. Let

1

= Avl.
|vy

’
Uy

Then v, has norm 1. Let
wy = vy — (0 - VY)Y,

and then
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Inductively, we let

W, =10, — (Ur ! U/l)vll -t (U,' U;.,l)l);._l
and then
) 1
v, = Ww,.
[w,|
The {v}, ..., v,} isan orthonormal basis. The inductive process just described

is known as the Gram-Schmidt orthogonalization.

§5. HERMITIAN FORMS

Let k, be an ordered field (a subfield of the reals, if you wish) and let k = k(i),
where i = ./ —1. Then k has an automorphism of order 2, whose fixed field
18 k.

Let E be a finite-dimensional vector space over k. We shall deal with a hermi-
tian form on E, i.e. a map

Ex E-k

written

(x, )= <{x, ¥

which is k-linear in its first variable, k-anti-linear in its second variable, and such
that

9 =<y, x)

for all x, ye E.

We observe that {x, x> € k,, for all x € E. This is essentially the reason why
the proofs of statements concerning symmetric forms hold essentially without
change in the hermitian case. We shall now make the list of the properties which
apply to this case.

Theorem 5.1.  There exists an orthogonal basis. If the form is non-degenerate,
there exists an integer r having the following property. If {v,, ..., v,} is an
orthogonal basis, then precisely r among the n elements

(v, V1), ..., (U V)

are > 0 and n — r among these elements are < 0.
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An orthogonal basis {vy, ..., v,} such that {v;, v;> = 1 or —1 is called an
orthonormal basis.

Corollary 5.2. Assume that the form is non-degenerate, and that every positive
element of k; is a square. Then there exists an orthonormal basis.

We say that the hermitian form is positive definite if (x, x) > 0 for all
x € E. We say that it is negative definite if (x, x) <O forallx € E, x # 0.

Corollary 5.3. Assume that the form is non-degenerate. Then E admits an
orthogonal decomposition E = E* 1 E~ such that the form is positive definite
on E* and negative definite on E~. The dimension of E* (or E™) is the same
in all such decompositions.

The proofs of Theorem 5.1 and its corollaries are identical with those of the
analogous results for symmetric forms, and will be left to the reader.
We have the polarization identity, for any k-linear map A : E — E, namely

If {Ax, x) = 0 for all x, we replace x by ix and get

CAx, y) + (Ay, x) =0,
i{Ax,y) — i{Ay, x) = 0.

From this we conclude:
If {Ax, x> =0, for all x, then A = 0.

This is the only statement which has no analogue in the case of symmetric
forms. The presence of i in one of the above linear equations is essential to the
conclusion. In practice, one uses the statement in the complex case, and one
meets an analogous situation in the real case when A is symmetric. Then the
statement for symmetric maps is obvious.

Assume that the hermitian form is positive definite, and that every positive
element of k, is a square.

We have the Schwarz inequality, namely

1<%, YO 1P = e X<, v
whose proof comes again by expanding
0 < <ax + By, ax + By)

and setting o« = {y, y> and f = —<{x, y).
We define the norm of | x| to be

|x| = /<x, %)
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Then we get at once the triangle inequality
lx +y[ = [x| + [yl
and for a ek,
lox| = fof [x].

Just as in the symmetric case, given a basis, one can find an orthonormal
basis by the inductive procedure of subtracting successive projections. We leave
this to the reader.

§6. THE SPECTRAL THEOREM (HERMITIAN CASE)

Throughout this section, we let E be a finite dimensional space over C, of dimension
2> 1, and we endow E with a positive definite hermitian form.

Let A: E — E be a linear map (i.e. C-linear map) of E into itself. For fixed
y€ E, the map x— {Ax, y) is a linear functional, and hence there exists a
unique element y* € E such that

(Ax, y) = (X, 9%

for all xe E. We define the map A*:E - E by A*y = y* It is immediately
clear that A* is linear, and we shall call A* the adjoint of A with respect to our
hermitian form.

The following formulas are trivially verified, for any linear maps A4, B of E
into itself:

(A + B)* = A* + B*, A% = A,

(@A) = aA*, (AB)* = B*A*.

A linear map A4 is called self-adjoint (or hermitian) if 4* = A.
Proposition 6.1. A is hermitian if and only if (Ax, x) is real for all x € E.

Proof. Let A be hermitian. Then

(Ax, x) = {(x, Ax) = {Ax, x),

whence (Ax, x) is real. Conversely, assume (Ax, x) is real for all x. Then
(Ax, x) = {Ax, x) = {x, Ax) = {A*x, x),

and consequently {(4 — A*)x, x> = Oforall x. Hence 4 = A* by polarization.
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Let A:E — E be a linear map. An element ¢ € E is called an eigenvector
of A if there exists 1 € C such that AZ = A If £ # 0, then we say that A is an
eigenvalue of 4, belonging to £.

Proposition 6.2. Let A be hermitian. Then all eigenvalues belonging to
nonzero eigenvectors of A are real. If & &' are eigenvectors + 0 having
eigenvalues A, X respectively, and if A # X, then £ L £'.

Proof. Let A be an eigenvalue, belonging to the eigenvector ¢ # 0. Then
(AE, &y = (&, AL, and these two numbers are equal respectively to A(E, &>
and (¢, &>, Since & # 0, it follows that A = 4, i.e. that 4 is real. Secondly,
assume that & & and A, A’ are as described above. Then

CAE &) = K&, &) = (G AL = 1L, &),
from which it follows that (£, &> = 0.

Lemma 6.3. Let A:E — E be a linear map, and dim E = 1. Then there
exists at least one non-zero eigenvector of A.

Proof. We consider C[A], i.e. the ring generated by 4 over C. As a vector
space over C, it is contained in the ring of endomorphisms of E, which is finite
dimensional, the dimension being the same as for the ring of all n X n matrices
if n = dim E. Hence there exists a non-zero polynomial P with coefficients in
C such that P(A) = 0. We can factor P into a product of linear factors,

PX)=(X = 4) - (X — 4y)

with ;€ C. Then (4 — A,I)--- (4 — 4, I) = 0. Hence not all factors 4 — A;1
can be isomorphisms, and there exists 1€ C such that 4 — Al is not an iso-
morphism. Hence it has an element £ # Oinits kernel, and we get A — A& = 0.
This shows that & is a non-zero eigenvector, as desired.

Theorem 6.4. (Spectral Theorem, Hermitian Case). Let E be a non-
zero finite dimensional vector space over the complex numbers, with a positive
definite hermitian form. Let A : E — E be a hermitian linear map. Then E has
an orthogonal basis consisting of eigenvectors of A.

Proof. Let &, be a non-zero eigenvector, with eigenvalue 4, and let E; be
the subspace generated by £,. Then 4 maps Ej into itself, because

<AEt §1> = <Ef, A¢y) = <Et /1151> = /11<Ei', ¢ =0,

whence AE7 is perpendicular to &;.
Since £, # 0 we have {(&,, &;> > 0 and hence, since our hermitian form is
non-degenerate (being positive definite), we have

E:E1®E1L.
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The restriction of our form to Ef is positive definite (if dim E > 1). From
Proposition 6.1, we see at once that the restriction of A to E{is hermitian. Hence
we can complete the proof by induction.

Corollary 6.5. Hypotheses being as in the theorem, there exists an ortho-
normal basis consisting of eigenvectors of A.

Proof. Divide each vector in an orthogonal basis by its norm.

Corollary 6.6. Let E be a non-zero finite dimensional vector space over the
complex numbers, with a positive definite hermitian form f. Let g be another
hermitian form on E. Then there exists a basis of E which is orthogonal for
both f and g.

Proof. We write f(x, y) = {x, y>. Since f is non-singular, being positive
definite, there exists a unique hermitian linear map A4 such that g(x, y) = {4x, y)>
for all x, ye E. We apply the theorem to A4, and find a basis as in the theorem,
say {vy,..., v,}. Let A; be the eigenvalue such that Av; = A;v;. Then

g(v;, v;) = {Av;, v;) = 4v;, V),
and therefore our basis is also orthogonal for g, as was to be shown.

We recall that a linear map U : E — E is unitary if and only if U* = U™!.
This condition is equivalent to the property that (Ux, Uy) = (x, y) for all elements
x, y € E. In other words, U is an automorphism of the form f.

Theorem 6.7. (Spectral Theorem, Unitary Case). Ler E be a non-zero
finite dimensional vector space over the complex numbers, with a positive definite
hermitian form. Let U : E— FE be a unitary linear map. Then E has an orthogonal
basis consisting of eigenvectors of U.

Proof. Let £, # 0 be an eigenvector of U. It is immediately verified that
the subspace of E orthogonal to ¢, is mapped into itself by U, using the relation
U* = U™, because if 7 is perpendicular to &,, then

Un, &) = U =, U™ D = p, A7) = 0.
Thus we can finish the proof by induction as before.

Remark. If 1 is an eigenvalue of the unitary map U, then A has necessarily
absolute value 1 (because U preserves length), whence A can be written in the
form e with 0 real, and we may view U as a rotation.

Let A: E — E be an invertible linear map. Just as one writes a non-zero
complex number z = re® with r > 0, there exists a decomposition of A as a
product called its polar decomposition. Let P : E — E be linear. We say that P
is semipositive if P is hermitian and we have (Px, x) = 0 for all x € E. If we
have (Px, x) > 0 for all x # 0 in E then we say that P is positive definite. For



584 STRUCTURE OF BILINEAR FORMS XV, §7

example, if we let P = A*A then we see that P is positive definite, because
(A*Ax, x) = (Ax, Ax) > 0if x # 0.

Proposition 6.8. Let P be semipositive. Then P has a unique semipositive
square root B : E — E, i.e. a semipositive linear map such that B> = P.

Proof. For simplicity, we assume that P is positive definite. By the spectral
theorem, there exists a basis of E consisting of eigenvectors. The eigenvalues
must be > 0 (immediate from the condition of positivity). The linear map defined
by sending each eigenvector to its multiple by the square root of the corresponding
eigenvalue satisfies the required conditions. As for uniqueness, since B commutes
with P because B> = P, it follows that if {v,,..., v,} is a basis consisting of
eigenvectors for P, then each v; is also an eigenvector for B. (Cf. Chapter X1V,
Exercises 12 and 13(d).) Since a positive number has a unique positive square
root, it follows that B is uniquely determined as the unique linear map whose
effect on v; is multiplication by the square root of the corresponding eigenvalue
for P.

Theorem 6.9. Let A:E — E be an invertible linear map. Then A can be
written in a unique way as a product A = UP, where U is unitary and P is
positive definite.

Proof. Let P = (A*A)"2, and let U = AP~!. Using the defiitions, it is
immediately verified that U is unitary, so we get the existence of the decom-
position. As for uniqueness, suppose A = U,P;. Let

U2 = PPI_I = U_lUl.

Then U, is unitary, so U3U, = I. From the fact that P* = P and P} = P, we
conclude that P2 = P?. Since P, P, are Hermitian positive definite, it follows
as in Proposition 6.8 that P = P, thus proving the theorem.

Remark. The arguments used to prove Theorem 6.9 apply in the case of
Hilbert space in analysis. Cf. my Real Analysis. However, for the uniqueness,
since there may not be “eigenvalues”, one has to use another technique from
analysis, described in that book.

As a matter of terminology, the expression A = UP in Theorem 6.9 is called
the polar decomposition of A. Of course, it does matter in what order we write
the decomposition. There is also a unique decomposition A = P;U; with P,
positive definite and U, unitary (apply Theorem 6.9 to A™!, and then take
inverses).

§7. THE SPECTRAL THEOREM (SYMMETRIC CASE)

Let E be a finite dimensional vector space over the real numbers, and let g be
a symmetric positive definite form on E. If A : E — E is a linear map, then we know
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that its transpose, relative to g, is defined by the condition

(Ax, yy = <x,'Ay)

for all x, ye E. We say that A is symmetric if 4 = ‘A. As before, an element
& e E is called an eigenvector of A if there exists A € R such that A¢ = A, and 4
is called an eigenvalue if & # 0.

Theorem 7.1. (Spectral Theorem, Symmetric Case). Let E ¥ 0. Let
A:E — E be a symmetric linear map. Then E has an orthogonal basis
consisting of eigenvectors of A.

Proof. If we select an orthogonal basis for the positive definite form,
then the matrix of A with respect to this basis is a real symmetric matrix, and
we are reduced to considering the case when E = R". Let M be the matrix repre-
senting A. We may view M as operating on C", and then M represents a hermi-
tian linear map. Let z # 0 be a complex eigenvector for M, and write

z=Xx+ 1y,

with x, y € R”. By Proposition 6.2, we know that an eigenvalue A for M, be-
longing to z, is real, and we have Mz = Az. Hence Mx = Ax and My = Ay.
But we must have x # 0 or y # 0. Thus we have found a nonzero eigenvector
for M, namely, A,in E. We can now proceed as before. The orthogonal comple-
ment of this eigenvector in E has dimension (n — 1), and is mapped into itself by
A. We can therefore finish the proof by induction.

Remarks. The spectral theorems are valid over a real closed field; our
proofs don’t need any change. Furthermore, the proofs are reasonably close
to those which would be given in analysis for Hilbert spaces, and compact
operators. The existence of eigenvalues and eigenvectors must however be
proved differently, for instance using the Gelfand-Mazur theorem which we have
actually proved in Chapter XII, or using a variational principle (i.e. finding a
maximum or minimum for the quadratic function depending on the operator).

Corollary 7.2. Hypotheses being as in the theorem, there exists an ortho-
normal basis consisting of eigenvectors of A.

Proof. Divide each vector in an orthogonal basis by its norm.

Corollary 7.3. Let E be a non-zero finite dimensional vector space over the
reals, with a positive definite symmetric form f. Let g be another symmetric
form on E. Then there exists a basis of E which is orthogonal for both f and g.

Proof. We write f(x, y) = {x, y). Since f is non-singular, being positive
definite, there exists a unique symmetric linear map A4 such that

g(x, y) = {Ax, y»
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for all x, ye E. We apply the theorem to A4, and find a basis as in the theorem.
It is clearly an orthogonal basis for g (cf. the same proof in the hermitian case).

The analogues of Proposition 6.8 and the polar decomposition also hold in
the present case, with the same proofs. See Exercise 9.

§8. ALTERNATING FORMS

Let E be a vector space over the field k, on which we now make no restriction.
We let f be an alternating form on E, i.e. a bilinear map f: E x E — k such that
f(x,x) = x* = 0for all xe E. Then

Xy=-—y-x

for all x, y € E, as one sees by substituting (x + y) for x in x? = 0.

We define a hyperbolic plane (for the alternating form) to be a 2-dimensional
space which is non-degenerate. We get automatically an element w such that
w? = 0, w # 0. If P is a hyperbolic plane, and w € P, w # 0, then there exists
an element y # 0 in P such that w - y # 0. After dividing y by some constant,
we may assume that w -y = 1. Theny - w = —1. Hence the matrix of the form

with respect to the basis {w, y} is
01
-1 0/

The pair w, y is called a hyperbolic pair as before. Given a 2-dimensional vector
space over k with a bilinear form, and a pair of elements {w, y} satisfying the
relations

W2=yZ:09 yWZ_la Wy:15

then we see that the form is alternating, and that (w, y) is a hyperbolic plane for
the form.

Given an alternating form f on E, we say that E (or f) is hyperbolic if E is
an orthogonal sum of hyperbolic planes. We say that E (or f)isnullifx-y = 0
forall x, ye E.

Theorem 8.1. Let f be an alternating form on the finite dimensional vector
space E over k. Then E is an orthogonal sum of its kernel and a hyperbolic
subspace. If E is non-degenerate, then E is a hyperbolic space, and its dimension
is even.

Proof. A complementary subspace to the kernel is non-degenerate, and
hence we may assume that E is non-degenerate. Let we E, w # 0. There
exists y € E such that w- y # Oand y # 0. Then (w, y) is non-degenerate, hence
is a hyperbolic plane P. We have E = P @ P* and P! is non-degenerate. We
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complete the proof by induction.
Corollary 8.2. All alternating non-degenerate forms of a given dimension
over a field k are isometric.

We see from Theorem 8.1 that there exists a basis of E such that relative to
this basis, the matrix of the alternating form is

For convenience of writing, we reorder the basis elements of our orthogonal
sum of hyperbolic planes in such a way that the matrix of the form is

I, 0
- 0

r

0
0
0 0 0
where I, is the unit r x r matrix. The matrix
0 I,
-1, 0
is called the standard alternating matrix.

Corollary 8.3. Let E be a finite dimensional vector space over k, with a
non-degenerate symmetric form denoted by ( , ). Let Q) be a non-de-
generate alternating form on E. Then there exists a direct sum decomposition
E = E, @ E, and a symmetric automorphism A of E (with respect to { , ))
having the following property. If x, y € E are written

x = (xy,X,) with x,€E, and x,€E,,

y={(1y) with y,€eE; and y,€E,,
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then
Q(X, y) = <AX1’ J’2> - <AX2, )’1>

Proof. Take a basis of E such that the matrix of Q with respect to this basis
is the standard alternating matrix. Let f be the symmetric non-degenerate
form on E given by the dot product with respect to this basis. Then we obtain
a direct sum decomposition of E into subspaces E,, E, (corresponding to the
first n, resp. the last n coordinates), such that

Qx, y) = f(x1, y2) — f(x2, y1)-

Since ¢ , ) is assumed non-degenerate, we can find an automorphism A4 having
the desired effect, and A is symmetric because fis symmetric.

§9. THE PFAFFIAN

An alternating matrix is a matrix G such that 'G = — G and the diagonal
elements are equal to 0. As we saw in Chapter XIII, §6, it is the matrix of an
alternating form. We let G be an n x n matrix, and assume n is even. (For odd
n, cf. exercises.)

We start over a field of characteristic 0. By Corollary 8.2, there exists a non-
singular matrix C such that ‘CGC is the matrix

0 I, 0
-1, 0 0
0 0 0

and hence
det(C)? det(G) =1 or 0

according as the kernel of the alternating form is trivial or non-trivial. Thus in
any case, we see that det(G) is a square in the field.

Now we move over to the integers Z. Lett; (1 < i <j < n) be n(n — 1)/2
algebraically independent elements over Q, let t;, = Ofori = 1,..., n, and let
t;j = —t; for i > j. Then the matrix T = (t;;) is alternating, and hence det(T)
is a square in the field Q(t) obtained from Q by adjoining all the variables ¢;;.
However, det(T) is a polynomial in Z[t], and since we have unique factorization
in Z[t], it follows that det(T) is the square of a polynomial in Z[t]. We can write

det(T) = P(t)*.

The polynomial P is uniquely determined up to a factor of + 1. If we substitute
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values for the t;; so that the matrix T specializes to

0 In/2
-1, 0/

then we see that there exists a unique polynomial P with integer coefficients
taking the value 1 for this specialized set of values of (t). We call P the generic
Pfaffian of size n, and write it Pf.

Let R be a commutative ring. We have a homomorphism

Z[t] - R[1]

induced by the unique homomorphism of Z into R. The image of the generic
Pfaffian of size n in R[] is a polynomial with coefficients in R, which we still
denote by Pf. If G is an alternating matrix with coefficients in R, then we write
Pf(G) for the value of Pf(r) when we substitute g;; for t;; in Pf. Since the deter-
minant commutes with homomorphisms, we have:

Theorem 9.1. Let R be a commutative ring. Let (g;;) = G be an alternating
matrix with g;; € R. Then

det(G) = (Pf(G))>.
Furthermore, if C is an n x n matrix in R, then
PI(CG'C) = det(C) Pf(G).

Proof. The first statement has been proved above. The second statement
will follow if we can prove it over Z. Let u;; (i,j = 1, ..., n) be algebraically
independent over Q, and such that u,;, t;; are algebraically independent over Q.
Let U be the matrix (u;;). Then

Pf(UT'U) = + det(U) P(T),

as follows immediately from taking the square of both sides. Substitute values
for U and T such that U becomes the unit matrix and T becomes the standard
alternating matrix. We conclude that we must have a + sign on the right-hand
side. Our assertion now follows as usual for any substitution of U to a matrix in
R, and any substitution of T to an alternating matrix in R, as was to be shown.

§10. WITT’'S THEOREM

We go back to symmetric forms and we let k be a field of characteristic + 2.
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Let E be a vector space over k, with a symmetric form. We say that E is a
hyperbolic plane if the form is non-degenerate, if E has dimension 2, and if there
exists an element w # 0 in E such that w? = 0. We say that E is a hyperbolic
space if it is an orthogonal sum of hyperbolic planes. We also say that the form
on E is hyperbolic.

Suppose that E is a hyperbolic plane, with an element w # 0 such that
w2 = 0. Let ue E be such that E = (w, u). Then u-w # 0; otherwise w would
be a non-zero element in the kernel. Let b € k be such that w-bu = bw-u = 1.

Then select a € k such that
(aw + bu)® = 2abw -u + b*u? = 0.

(This can be done since we deal with a linear equation in a.) Put v = aw + bu.
Then we have found a basis for E, namely E = (w, v) such that

w=12=0 and w-v=1.

Relative to this basis, the matrix of our form is therefore

01
(o)

We observe that, conversely, a space E having a basis {w, v} satisfying
w? = v?2 = 0and w-v = | is non-degenerate, and thus is a hyperbolic plane. A
basis {w, v} satisfying these relations will be called a hyperbolic pair.

An orthogonal sum of non-degenerate spaces is non-degenerate and hence

a hyperbolic space is non-degenerate. We note that a hyperbolic space always
has even dimension.

Lemma 10.1. Let E be a finite dimensional vector space over k, with a non-
degenerate symmetric form g. Let F be a subspace, F the kernel of F, and
suppose we have an orthogonal decomposition

F=F,1U.

Let {w,...,w,} be a basis of F,. Then there exist elements v,, ..., v;in E
perpendicular to U, such that each pair {w;, v;} is a hyperbolic pair generating
a hyperbolic plane P;, and such that we have an orthogonal decomposition

UlpP,L---LP,.
Proof. Let
Ul =(W2,...,WS)® U

Then U, is contained in F, @ U properly, and consequently (Fo ® U)* is
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contained in U7 properly. Hence there exists an element u, € U7 but
u ¢ (Fo @ U)-

We have wy -u; # 0, and hence (w,, u,) is a hyperbolic plane P,. We have
seen previously that we can find v, € P, such that {w,, v,} is a hyperbolic pair.
Furthermore, we obtain an orthogonal sum decomposition

F, =(wy,...,w)LP LU.

Then it is clear that (w,,...,w,) is the kernel of F,, and we can complete the
proof by induction.

Theorem 10.2 Let E be a finite dimensional vector space over k, and let g
be a non-degenerate symmetric form on E. Let F, F' be subspaces of E, and
let 0: F — F' be an isometry. Then o can be extended to an isometry of E onto
itself.

Proof. We shall first reduce the proof to the case when F is non-degenerate.

We can write F = Fy L U as in the lemma of the preceding section, and
then oF = F' = 6Fy L gU. Furthermore, 6F, = Fj is the kernel of F'. Now
we can enlarge both F and F' as in the lemma to orthogonal sums

ULP,L--1P, and oULP,L-.-LP,

corresponding to a choice of basis in F, and its corresponding image in Fj.
Thus we can extend ¢ to an isometry of these extended spaces, which are non-
degenerate. This gives us the desired reduction.

We assume that F, ' are non-degenerate, and proceed stepwise.

Suppose first that F' = F, i.e. that o is an isometry of F onto itself. We can
extend ¢ to E simply by leaving every element of F* fixed.

Next, assume that dim F = dim F' = 1 and that F # F'. Say F = (v) and
F' = (v"). Then v* = v'>. Furthermore, (v, v') has dimension 2.

If (v, v') is non-degenerate, it has an isometry extending ¢, which maps v on
v"and v" on v. We can apply the preceding step to conclude the proof.

If (v, v') is degenerate, its kernel has dimension 1. Let w be a basis for this
kernel. There exist a, b € k such that v’ = av + bw. Then v'? = a?v? and hence
a = t+1. Replacing v’ by — v’ if necessary, we may assume a = 1. Replacing w
by bw, we may assume v’ = v + w. Let z = v + v'. We apply Lemma 10.1 to
the space

(w, z) = (w) L (2).
We can find an element y € E such that

y-z=0, y? =0, and w-y=1.



